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Foreword

Linear Algebra Lessons is a teaching material prepared for the course in lin-
ear algebra intended for undergraduate students of mathematics at the Science
Faculty of Palacký University in Olomouc.

This text offers basic knowledge about Euclidean vector spaces, homomor-
phisms and endomorphisms of vector spaces and pseudoinversion. The text is
subdivided in such a way that each subchapter corresponds basically to one lec-
ture. Form the foundation stones of linear algebra, these sections are applied
in other mathematical disciplines, such as mathematical analysis, geometry or
mathematical statistics. They are also the basis of the mathematical apparatus
applied to describe natural or social phenomena.

The text lays out basic concepts and does not aim to replace the lectures.
On the contrary, it should provide students with sufficient basic knowledge so
that the lectures can be devoted to building, or rather emphasizing the logical
structure of algebra and its internal context. Each chapter contains educational
goals, motivation and specific tasks, thereby giving students the opportunity to
familiarize themselves with a given section before the relevant lecture and to
determine the questions which the lecture is likely to particularly focus on. To
record the findings provided by the lecture, students can use a blank sheet inserted
after each subchapter.

Students with a deeper interest in linear algebra will welcome a list of further
recommended literature.

The text offers color-coded wordings of definitions (red box) and mathematical
theorems (grey box). The following icons will guide you through the text, which
should help you work with it independently.

Objectives: At the beginning of each chapter you will find specifically formu-
lated objectives. They will give you an overview of what you will understand
after studying a given topic and what you will be able to do.

Motivation: A paragraph explaining why we are going to deal with a given
problem at all. It should motivate you to study this particular passage.

Guide: A passage highlighting the links between the subject matter and
other parts of the text as well as your previous knowledge. It can thus be
seen as a kind of “contextualisation”.

Remember: It should be used to alert you to a mistake commonly (and
entirely unnecessarily) made by students.

Task: It is meant to encourage you to create something based on the study
of a particular topic. The focus here is on the application of received knowl-
edge.
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Questions: They check to what extent you understand the subject matter,
whether you remember the essential information and whether you can apply
it.

October 2020
Author

4



Contents

1 Euclidean Vector Space 7
1.1 Basic notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Orthogonality in the Euclidean vector space . . . . . . . . . . . . 13
1.3 Distance and angle in Euclidean vector space . . . . . . . . . . . . 23

1.3.1 Gram determinant, exterior product and orthogonal product 23
1.3.2 Distance and deviation in the Euclidean vector space . . . 28

2 Homomorphisms of vector spaces 37
2.1 Basic notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2 Vector space of homomorphisms; composition of homomorphisms 47

2.2.1 Vector space of homomorphisms . . . . . . . . . . . . . . . 47
2.2.2 Composition of homomorphisms . . . . . . . . . . . . . . 50

2.3 Endomorphisms of a vector space . . . . . . . . . . . . . . . . . . 52
2.4 Eigenvalues and eigenspaces of endomorphisms of vector spaces . 58
2.5 Homomorphisms of Euclidean vector spaces . . . . . . . . . . . . 64

2.5.1 Orthogonal projection . . . . . . . . . . . . . . . . . . . . 64
2.5.2 Orthogonal homomorphisms . . . . . . . . . . . . . . . . . 66

3 Factor vector spaces 73

4 Dual vector spaces 83

5 Pseudo-inverse matrices and homomorphisms 89
5.1 Pseudo-inverse matrices . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 Moore-Penrose pseudoinverse. Optimal approximate solution of

systems of linear equations . . . . . . . . . . . . . . . . . . . . . . 93
5.2.1 Moore-Penrose pseudo-inverse matrix . . . . . . . . . . . . 93
5.2.2 Moore-Penrose homomorphism . . . . . . . . . . . . . . . 98

References 103

5



6



1 Euclidean Vector Space

1.1 Basic notions

Students are able to define an Euclidean vector space and to recognize
a scalar product. They are able to define the distance function (metric) in
an Euclidean vector space and to determine the norm of the vector and the
angle of the vectors.

You know the term scalar product of two vectors from your secondary school
but you started working with it using intuitively understood terms of angle
and length of a vector. Here you will learn how to define the concept of
a scalar product axiomatically and how to define the terms length and
angle of vectors. You will also become familiar with the term distance of
two vectors.

Definition 1.1 A vector space V over the field of real numbers R endowed
with a mapping · : V× V→ R having the following properties:

∀u,v,w ∈ V, ∀t ∈ R :

1. u · v = v · u,

2. u · (v + w) = u · v + u ·w,

3. (tu) · v = t(u · v),

4. u 6= o⇒ u · u > 0.

is called an Euclidean vector space. The mapping · : V × V → R is called
a scalar product (or a dot product) in V . A real number u ·v is called a scalar
product of vectors u and v.

Remark 1.2

• An Euclidean vector space may be considered as an ordered couple (V, ·).
In a given real vector space, we may define different scalar products and
thus we obtain different Euclidean vector spaces.

• With respect to the fact that scalars (t, r, s ∈ R) and vectors (u,v,w ∈ V)
are denoted by different symbols, we may denote the scalar product u·v
only by uv. It is distinguished from a scalar multiplication f.e. tu.

• The scalar product of vectors u and v may be denoted also in the following
ways: <u,v>, β(u,v) etc.
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Let us remember that a scalar product is defined only for vector spaces over
real numbers1.

It is usual to denote a scalar product uu by u2.

Example 1.3 Is the following map “·” a scalar product in a vector space V ?

(i) V = R2, (x1, x2) · (y1, y2) = 2x1y1 + x1y2 + x2y1 + x2y2,
[yes]

(ii) V = Rn, (x1, x2, . . . , xn) · (y1, y2, . . . , yn) =
∑n

i=1 xiyi,
[yes; this product is usually called a standard scalar product in Rn]

(iii) V = R3, (x1, x2, x3) · (y1, y2, y3) = 2x1y1 + x1y2 + x2y1 + x2y2,
[no]

(iv) V = R2, (x1, x2) · (y1, y2) = 2x1y1 + x1,
[no]

(v) V = R3, (x1, x2, x3) · (y1, y2, y3) = 2x1y1 + x1y2 + x2y1 + 2x2y2 + 2x3y3.
[yes]

Theorem 1.4 Let V with scalar product · be an Euclidean vector space. Then
any subspace W ⊆⊆ V with a restriction ·|W×W is an Euclidean vector space.

Corollary 1.5 All notions defined for Euclidean vector spaces may be used in
subspaces and need not be defined specially for subspaces. All theorems which
hold for Euclidean spaces are true also for their subspaces and need not to be
proved again.

Theorem 1.6 For any u,v ∈ V and any t, r ∈ R we have:

1. (tu)(rv) = (tr)uv,

2. uu = 0⇔ u = o,

3. (∀x ∈ V : xu = 0)⇔ u = o,

4. u = v⇔ (∀x ∈ V : xu = xv).

Corollary 1.7 For any vector u ∈ V we have uu ≥ 0.

1The generalisation of vector spaces over complex numbers is called a unitary product.
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Ad 1.6 (4): Let us note that mere existence of x with xu = xv does not
imply the equality u = v. For example in R2 with the standard scalar
product, we have (1, 1) · (1, 0) = (1, 1) · (1

2
, 1
2
), but (1, 0) 6= (1

2
, 1
2
).

Definition 1.8 Let u ∈ V. Then the number denoted by ‖u‖ and defined
by

‖u‖ =
√
uu.

is called a norm (or lenght) of a vector u. In the case when ‖u‖ = 1, a vector
u is termed normalised.

Example 1.9 Write formula for the vector norm for each of scalar products in
Exersice 1.3.

[Solution: Let us present a solution for a scalar product (i):
According to Definition 1.8, we may write for u = (u1, u2) ∈ R2

‖u‖ =
√
uu =

√
(u1, u2)(u1, u2) =

√
2u1u1 + u1u2 + u2u1 + u2u2 =

=
√

2u21 + 2u1u2 + u22

Analogously, for s scalar product (ii) we obtain

‖u‖ =
√
u21 + u22 + u23.]

Theorem 1.10 For any vectors u,v ∈ V and any t ∈ R the following holds

1. ‖tu‖ = |t| ‖u‖;
2. ‖u‖ = 0⇔ u = o;

3. ‖u‖ > 0⇔ u 6= o;

4. ‖u‖ ‖v‖ ≥ |uv|; this inequality turns into equality if and only if u,v are
linearly independent vectors;

5. ‖u‖ + ‖v‖ ≥ ‖u + v‖; this inequality turns into equality if and only if
there exists t ∈ R, t ≥ 0, such that v = tu or u = tv;

6. |‖u‖ − ‖v‖| ≤ ‖u− v‖; this inequality turns into equality if and only if
there exists t ∈ R, t ≥ 0, such that v = tu or u = tv.

The inequality 4 in Theorem 1.10 is called the Cauchy or Schwarz inequality;
the inequality 5 is called the triangle unequality.
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Definition 1.11 Let u,v ∈ V. Then the number belonging to < 0, π >
denoted by ](u,v) and defined by

1. u 6=o 6=v : ](u,v) = arccos uv
‖u‖ ‖v‖ ,

2. u=o ∨ v=o : ](u,v) = π
2

is called an angle of vectors u and v.

Corollary 1.12 For any u,v ∈ V we have:

1. ](u,v)=π
2
⇔ uv=0,

2. uv = ‖u‖ ‖v‖ cos](u,v).

Remark 1.13

• The symmetry of scalar product (property 1 of Definition 1.1) implies
](u,v) = ](v,u) for any u,v ∈ v.

• In the following section, the point 1 of Corollary 1.12 will be used for the
formulation of a criterion of orthogonality of two vectors.

• In secondary schools, point 2 is usually used for the definition of a scalar
product by the lenght of vectors and the angle between them. We can see
that the axiomatic definition 1.1 of a scalar product is consistent with its
intuitive definition presented in secondary schools.

Having defined notions of lenght of vector and angle between vectors, we
introduce the notion metric or distance of two wectors.

In calculus, the notion metric space denotes any non-empty set M with a
mapping ρ : M ×M → R+ having the following properties:

1. ∀x, y ∈M,x 6= y : ρ(x, y) = ρ(y, x) > 0,

2. ∀x ∈M : ρ(x, x) = 0,

3. ∀x, y, z ∈M : ρ(x, y) + ρ(y, z) ≥ ρ(y, z).

The mapping ρ is called a metric on M.

It is clear, that ρ is the natural generalisation of the notion of distance
between two points, intuitively introduced in secondary schools for a plane
or 3-dimensional space. The notion of distance between two vectors is not
usually studied in secondary schools.
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Theorem 1.14 Let V be an euclidean vectors space. A mapping ρ : V×V→
R+ defined by

∀u,v ∈ V : ρ(u,v) = ‖v− u‖ (1.1)

is a metric on the set V.

Definition 1.15 Let V with a scalar product · be an Euclidean vector space.
Then a metric ρ on V defined by (1.1) is called a metric induced by a scalar
product ·.

Remark 1.16 Any Euclidean vector space is also a metric space. On a given
Euclidean vector space, other metrics may be also defined.

In the case of an arithmetical vector space Rn with the standard scalar prod-
uct, the metric induced by this scalar product is given by (cf. example 1.9):

ρ((x1, . . . , xn), (y1, . . . , yn)) =

√√√√ n∑
i=1

(yi − xi)2.

On the same vector space, we may defined also a metric ρ′ by

ρ′((x1, . . . , xn), (y1, . . . , yn)) = Max{|yi − xi|}ni=1,

which is different from the metric induced by scalar product.

Let us consider an arithmetical space R2 with a scalar product defined by the
relation (i) in Example 1.9. Then the relation for the metric induced by a scalar
product can be written as

ρ((x1, x2), (y1, y2)) =
√

2(y1 − x1)2 + 2(y1 − x1)(y2 − x2) + (y2 − x2)2.
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1.2 Orthogonality in the Euclidean vector space

Students are able to define the notion of orthogonality of vectors of an
Euclidean vector space. They are also able to construct an orthogonal
complement of any subspace and to determine the orthogonality of two
subspaces of an Euclidean vector space. Students can also construct an
orthonormalisation to a given base. They know Euclidean formulas for the
scalar product, the norm and the distance between two vectors.

Your secondary school surely gave you some idea about the orthogonality of
two vectors, the orthogonality of a vector to a set of vectors and, in the case
of one- and two-dimensional subspaces of a two- or three-dimensional space,
of mutual orthogonality of subspaces. Here you will learn how to generally
define the notion of orthogonality in Euclidean vector spaces to match your
intuitive notion of a few specific cases. You will be able to demonstrate that
in an orthonormal base, the formula for the scalar product of two vectors
has a very simple form. You will also learn how to construct an orthonormal
base in any Euclidean vector space.

Definition 1.17 Let u,v∈V. Vectors u,v are called orthogonal (or perpen-
dicular) vectors (which is denoted by u⊥v, if ](u,v) = π

2
.

Remark 1.18 With regard to Remark 1.13 we can see that the relation to be
orthogonal is symmetric on V, i.e. there is no difference between u⊥v and v⊥u.

From Corollary 1.12, we obtain a criterion of orthogonality of twoo vectors
(it is used by some authors as the definition of orthogonality of twoo vectors).

Theorem 1.19 Let u,v∈V. Then v⊥u⇔ uv = 0.

Definition 1.20 Let U ⊂ V. We say that

1. U is an orthogonal set of vectors if

∀u,v ∈ U : u 6= v⇒ uv = 0,

2. U is an orthonormal set of vectors, if U an orthogonal set of vectors and
the lenght of every of these vectors is equal to one.
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For finite subsets we have2:

Theorem 1.21 Let U = {u1,u2, . . . ,uk} ⊂ V. Then the following holds:

1. U is an orthogonal set of vectors if and only if

∀i, j ∈ {1, 2, . . . , k} : i 6= j ⇒ uiuj = 0,

2. U is an orthonormal set of vectors if and only if

∀i, j ∈ {1, 2, . . . , k} : uiuj = δij.

Remark 1.22 Let us remark that orthogonality and orthonormality are always
properties of a set of such vectors as a whole (not of individual vectors).

Now we will answer the question about the relation between orthogonality
of a set of vectors and linear (in)dependence of such a set. We will also
introduce a special term for bases whose elements form an orthonormal or
orthogonal set of vectors.

Theorem 1.23 Any orthogonal set of nonzero vectors of an Euclidean vector
space is linearly independent.

Corollary 1.24 Any orthonormal set of vectors of an Euclidean vector space
is linearly independent.

Let us note in regard in Theorem 1.23 that the assumption that all vectors
are nonzero cannot be omitted. Any set of vectors which contains zero
vector is linearly dependent.

Definition 1.25 A basis B of an Euclidean vector space V is called

1. an orthogonal basis if B is an orthogonal set of vectors of V,

2. an orthonormal basis if B is an orthonormal set of vectors of V.

2A symbol δij , called Kronecker delta, is defined for any natural numbers i, j in the following
way:

δij =

{
0 for i 6= j,
1 for i = j.
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From Theorem 1.23, it clearly follows:

Corollary 1.26

1. Any orthogonal set of n nonzero vectors of V forms an orthogonal basis
of V,

2. Any orthonormal set of n vectors of V forms an orthonormal basis of V.

The following theorem follows from properties of the scalar product and
from Theorem 1.21. It stipulates conditions when the formula for the scalar
product (expressed in coordinates of given vectors) has the so-called Eu-
clidean (or Cartesian) form. The simplicity of such a formula is the reason
why orthonormal bases are preferred (see also Theorem 1.29 and its corol-
lary).

The following theorem also implies that in the arithmetic Euclidean space
Rn with the standard scalar product, the standad basis3 is one of orthonor-
mal bases .

Theorem 1.27 Let B be a basis of a vector space V. The basis B is or-
thonormal if and only if

∀u,v∈V, {u}B={u1, . . . , un}, {v}B = {v1, . . . , vn} : uv =
n∑
j=1

ujvj. (1.2)

Let us recall that a symbol {x}B denotes coordinates of a vector x with
respect to the basis B.

Remark 1.28 The Euclidean formula (1.2) may be written also in the following
form:

uv = {u}B{v}TB .

Theorem 1.29 Let B be a basis of a vector space V. The basis B is or-
thonormal if and only if

∀u∈V, {u}B={u1, . . . , un} : ‖u‖ =

√√√√ n∑
j=1

u2j .

3I.e. the basis formed by arithmetical vectors (1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1).
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Corollary 1.30 Let B be a basis of a vector space V. The basis B is or-
thonormal if and only if

∀u,v∈V, {u}B={u1, . . . , un}, {v}B={v1, . . . , vn} : ρ(u,v) =

√√√√ n∑
j=1

(vj − uj)2.

We do not yet know if there exists at least one orthonormal basis of an Eu-
clidean vector space. By the mathematical induction (for the dimension of V),
try to verify the validity of the following theorem from which we can obtain the
answer to this question (how?).

Theorem 1.31 Any orthonormal basis of an subspace of an Euclidean vector
space may be completed to the orthonormal basis of this space.

Corollary 1.32 In any Euclidean vector space, there exists at least one or-
thonormal basis.

Example 1.33 Find at least one orthonormal basis of the Euclidean space de-
scribed in Exercise 1.3, (v).

[Instruction: Let us consider an arbitrary nonzero vector ē1 z V and construct
a set of vectors orthogonal to it. In this set, choose any nonzero vector ē2. Let
us now construct a set of vectors orthogonal to ē1 as well as to ē2 and in this
let us choose a vector ē3. Subsequently let us obtain an orthogonal basis of V.
Multiplying every vector ēi by 1

‖ei‖ we get the demanded basis. For example,

vectors e1 = (
√
2
2
, 0, 0), e2 = (

√
6
6
,−
√
6
3
, 0), e3 = (0, 0,

√
2
2

) form one of solutions.]

Example 1.34 Let be given vectors from an arithmetical vector space R3:

e1 = (1, 1, 0), e2 = (0, 1, 1), e3 = (0, 0, 1).

Construct a scalar product · in R3 such that B = <e1, e2, e3> is an orthonormal
basis.

[Instruction: A formula for a scalar product of two vectors with respect to the
basis B must have the form (1.2). Use a transformation of coordinates between
basis B and the standard basis R3.
Solution:
u · v = 3u1v1 − 2u1v2 + u1v3 − 2u2v1 + 2u2v2 − u2v3 + u3v1 − u3v2 + u3v3. ]

The following theorem may be easily derived from the definition of transition
matrix, matrix multiplication and relation (1.2).4

4By the symbol (B, C) we denote the transition matrix from the basis B to the basis C.

16



Theorem 1.35 Let B be an orthonormal basis and let C be an arbitrary basis
of an Euclidean vector space. The basis C is orthonormal if and only if

(B, C)(B, C)T = E

Definition 1.36 A real square matrix A is called an orthogonal matrix if

AAT = E.

Theorem 1.37 A real square matrix of order n is orthogonal if and only if
its rows form an orthonormal basis of an arithmetical vector space Rn with
the standard scalar product.

From theorems 1.35 and 1.37, it follows (how?):

Theorem 1.38 A set of orthogonal matrices of a given order endowed with
matrix multiplication forms a group which is a subgroup in the multiplicative
group of real regular matrices of the same order.

Let us recall that two basis of a given real vector space are called consistently
oriented if the determinant of the transition matrix is a positive number.
The following theorem (known also as a Gram-Schmidt orthonormalisation
shows that to every basis of an Euclidean vector space, a certain, uniquely
determined orthonormal basis may be constructed.

Theorem 1.39 To any basis U = <u1,u2, . . . ,un> of an Euclidean vector
space V, there exists exactly one orthonormal basis V = <v1,v2, . . . ,vn> of
this space with following properties:

1. for every r, r = 1, . . . , n, it holds: [u1,u2, . . . ,ur] = [v1,v2, . . . ,vr],

2. for every r, r = 1, . . . , n, the following r-tuples <u1,u2, . . . ,ur> a
<v1,v2, . . . ,vr> are consistely oriented basis of the respective subspaces.

Let us illustrate the construction of an orthonormal basis whose existence is
guaranteed by the previous theorem (the proof of Theorem 1.37 is based on this
contruction. Try to prove it using mathematical induction for n = dimV):

Firstly, to a basis U , let us construct an orthogonal basisW = <w1,w2, . . . ,wn>
with properties 1 and 2 of the previous theorem. Then vectors of the basis W
may be easily normalised and we thus obtain demanded basis V .

17



Let us put
w1 = u1. (1.3)

A vector w2 is searched in the following form:

w2 = u2 + tw1, (1.4)

which tohether with (1.3) means that properties 1 and 2 are fulfilled for r = 2 5.
Multiplying an equality (1.4) by a vector w1, we have

w1w2 = w1u2 + t(w1w1). (1.5)

Because we want W to be orthogonal, we put w1w2 = 0. The equation

0 = w1u2 + t(w1w1)

with an unknown t has exactly one solution since (w1w1) 6= 0. Substituting t
into an equality (1.4), we obtain a vector w2 which, together with w1, forms the
demanded basis for r = 2.

Analogously, we put

w3 = u2 + t2w2 + t1w1. (1.6)

Multiplying this equality by w1 and putting w1w3 = 0, we obtain a solvable
equation with an unknown t1 (because w1⊥w2). Multiplying (1.6) by w2 and
putting w2w3 = 0, we obtain a solvable equation with an unknown t2, and we
may construct a vector w3.

Proceeding further, we eventually obtain a vector wn which, together with its
predecessors, forms an orthogonal basis W with the demanded properties.

Example 1.40 Let be given a vector space R3 with a scalar product defined by

(x1, x2, x3) · (y1, y2, y3) = 2x1y1 + x1y2 + x2y1 + x2y2 + 2x3y3.

Orthonormalize a basis U = <u1,u2,u3>
6, where

u1 = (1, 0, 0), u2 = (0, 1, 0),u3 = (0, 0, 1).

[Solution: v1 =
√
2
2

(1, 0, 0), v2 =
√

2(−1
2
, 1, 0), v3 =

√
2
2

(0, 0, 1).]

Definition 1.41 Let u∈V, Q⊆V. A vector u is said to be orthogonal to a
set Q (it will be denoted by u⊥Q) if it is orthogonal to all vectors belonging
to Q.

5An appropriate “candidate” for the transition matrix between bases 〈u1,u2〉 and 〈w1,w2〉
has the form

(
1 0
t 1

)
. Thus, it is a regular matrix and has a positive determinant.

6You may see that U is not orthonormal.
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If a set Q is also a subspace, we obtain the following useful criterion.

Theorem 1.42 Let u∈V, U⊆⊆V. A vector u is orthogonal to U if and only
if it is orthogonal to some (and thus to every) set of generators of a subspace
W.

Definition 1.43 Let Q⊆V. The set of all vectors of V which are orthogonal
to Q is called an orthogonal complement of the set Q in V and it is denoted
by Q⊥.

Corollary 1.44

1. Let Q⊆V. Then:

Q⊥ = {y ∈ V; ∀x ∈ Q : xy = 0}.

2. Let Q ⊆⊆ V, Q = [u1, . . . ,uk]. Then:

Q⊥ = {y ∈ V; ∀i, i=1, . . . , k : uix = 0}.

Theorem 1.45 Let U ⊆⊆ V. Then:

1. dimU⊥ = dimV− dimU,

2. V = U⊕U⊥,

3. U⊥⊥ = U.

If U ⊆⊆ V, then it follows from the point 2 of the previous theorem that
any vector x ∈ V has one and only one expression in the form

x = x∗ + x⊥, where x∗ ∈ U, x⊥ ∈ U⊥.

This important result is used for the construction of the so-called orthogonal
projection of a vector onto a subspace.

Theorem 1.46 Let U,W ⊆⊆ V. Then:

1. (U + W)⊥ = U⊥ ∩W⊥,

2. (U ∩W)⊥ = U⊥ + W⊥,

3. U ⊆W⇔W⊥ ⊆ U⊥.
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The intuitive notion cultivated in secondary school plane and three-dimen-
sional geometry lessons leads us to consider two lines as orthogonal if their
direction vectors are orthogonal, i.e. if the direction of one of them belongs
to the orthogonal complement of the direction of the second line. Similarly,
a line is understood to be orthogonal to the plane if it is orthogonal to two
concurrent lines of that plane, i.e. if its direction belongs to the orthogonal
complement of the set of vectors associated with that plane. Finally, we
consider two planes orthogonal if one of them contains a perpendicular line
to the other, i.e. if the orthogonal complement of the set of vectors asso-
ciated with the latter of them is contained in the set of vectors associated
with the former. The following definition now seems natural.

Definition 1.47 Let U,W ⊆⊆ V. A vector U is said to be orthogonal to a
subspace W which is denoted by U⊥W if

U ⊆W⊥ ∨W⊥ ⊆ U.

It follows from Theorems 1.45 and 1.46:

Corollary 1.48 The relation “to be orthogonal” is a symmetric relation on
the set of subspaces of a given vector space.

We can speak of a pair of subspaces as of orthogonal subspaces.

Let us recall that a (vector) hyperplane of an n-dimensional vector space is
its every (n− 1)-dimensional subspace.

Theorem 1.49

1. To any vector hyperplane N ⊂ V, there exists unique (up to a non-zero
scalar multiplication) non-zero vector n ∈ V such that

N = {x ∈ V : xn = 0}. (1.7)

2. To any non-zero vector n ∈ V, there exists a unique vector hyperplane
N ⊂ V such that (1.7) holds.

Definition 1.50 Let N be an arbitrary hyperplane in V. Then N⊥ is called
a normal direction of a vector hyperplane N and any generator of the normal
direction is called a normal vector of a vector hyperplane N.

From Theorem 1.49, it follows:
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Theorem 1.51 Let N ⊂ V be an arbitrary hyperplane and B some orthonor-
mal basis of V. Then for any normal vector n of this hyperplane it holds:

{n}B = (a1, a2, . . . , an)

if and only if

N = {x ∈ V, {x}B = (x1, x2, . . . , xn) : a1x1 + a2x2 + · · ·+ anxn = 0}.

Example 1.52 Let W = [w1,w2] be a subspace of an Euclidean vector space
V3 and let

{w1}B = (1, 2, 0), {w2}B = (1, 1, 1).

Construct an orthogonal complement W⊥.

[Instruction: use point 2 of Corollary 1.44. Solution: W⊥ = [(2,−1,−1)].

A subspace W is a vector hyperplane which (according to Theorem 1.51) may
by expressed by the equation

2x1 − x2 − x3 = 0.
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1.3 Distance and angle in Euclidean vector space

Students are able to define the terms distance of a vector and deviation of
a vector from a subspace in the Euclidean vector space. They can define
the terms orthogonal and exterior product. They are also able to construct
an orthogonal projection of vectors onto a subspace, and to measure the
distance and deviation of a vector from a given subspace. Students are
able to use the method of least squares, are familiar with the properties of
exterior and orthogonal products of vectors in the Euclidean vector space,
and know how to work with them.

From the previous chapter, you know that an Euclidean vector space is a
direct sum of any of its subspaces and its orthogonal complement. With use
of decomposition of any vector, you will learn how to measure the distance
and deviance of a vector from a given subspace. You will also become
familiar with natural applications of this apparatus of linear algebra in
geometry and in solving systems of linear equations. You will learn that
the notions of mixed products and vector products that you worked with in
physics lessons in your secondary school can be generalised also for higher
dimensions.

1.3.1 Gram determinant, exterior product and orthogonal product

Before introducing the definitions of distance and angle between a vector
and a subspace, it is useful to look at the notions of Gram matrix, orthogonal
product and exterior product.

Definition 1.53 Let u1, . . . ,uk ∈ V. Then

1. a matrix

G(u1, . . . ,uk) =


u1·u1 u1·u2 . . . u1·uk
u2·u1 u2·u2 . . . u2·uk

...
...

...
uk·u1 uk·u2 . . . uk·uk


is called a Gram matrix of vectors u1, . . . ,uk and it is denoted by
G(u1, . . . ,uk).

2. a Gram determinant (or Gramian) of vectors u1, . . . ,uk is said to be
a number defined by

G(u1, . . . ,uk) = detG(u1, . . . ,uk).
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Remark 1.54 A Gram matrix is evidently a real symmetric matrix.

Theorem 1.55 For any u1, . . . ,uk ∈ V it holds:

1. G(u1, . . . ,uk) ≥ 0,

2. G(u1, . . . ,uk) = 0, if and only if vectors u1, . . . ,uk are linearly depen-
dent,

3. ∀π ∈ Sk : G(uπ(1), . . . ,uπ(k)) = G(u1, . . . ,uk).

A symbol Sk denotes a set of all permutations of a set {1, 2, . . . , k}.

Let us recall that to orient a vector space V means denoting one of its bases
as a positive basis. Positive bases are then all bases consistently oriented;
the other bases are called negative bases. For any vector space, there are
exactly two possible orientations.

Definition 1.56 Let u1, . . . ,un ∈ Vn and let B be a positive orthonormal
basis of an oriented vector space Vn.

If we denote {ui}B = (ui1, . . . , uin), 1≤i≤n, then an exterior product of
vectors u1, . . . ,un (with respect to the basis B) is said to be a number denoted
by [u1, . . . ,un]B and defined in the following way:

[u1, . . . ,un]B =

∣∣∣∣∣∣∣∣∣
u11 u12 . . . u1n
u21 u22 . . . u2n
...

...
...

un1 un2 . . . unn

∣∣∣∣∣∣∣∣∣ .

It follows from Definition 1.56 that the value of an exterior product of given
vectors formally depends on the choice of the basis. Let us take a close look at
this dependence.

Let B,B′ be orthonormal bases. The definition of the product of matrices and
the relation for the transformation of coordinates of vectors imply the following:
having denoted coordinates of given vectors u1, . . . ,un with respect to the basis
B′ in an analogical way as in definition 1.56, we may write

u11 u12 . . . u1n
u21 u22 . . . u2n
...

...
...

un1 un2 . . . unn

 =


u′11 u

′
12 . . . u

′
1n

u′21 u
′
22 . . . u

′
2n

...
...

...
u′n1 u

′
n2 . . . u

′
nn

 (B,B′).
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Based on Theorem 1.35, we may formulate the following theorem.

Theorem 1.57

1. The value of an exterior product of given vectors does not depend on the
choice of a positive orthonormal basis.

2. A change of the orientation of a vector space implies that a value of an
exterior product of given vectors turns into opposite number.

Remark 1.58 In the chosen orientation of a vector space V, the choice of the
positive orthonormal basis is thus not important, which is why we can denote an
exterior product only by [u1, . . . ,un].

Theorem 1.59 Let u1, . . . ,un ∈ Vn. Then it holds:

1. [u1, . . . ,un]2 = G(u1, . . . ,un),

2. ∀π ∈ Sn : [uπ(1), . . . ,uπ(n)] = sgnπ[u1, . . . ,un],

3. ∀i, 1 ≤ i ≤ n,∀ui,u′i ∈ V :

[u1, . . . , (ui + u′i), . . . ,un] = [u1, . . . ,ui, . . . ,un] + [u1, . . . ,u
′
i, . . . ,un],

4. ∀i, 1 ≤ i ≤ n,∀c ∈ R : [u1, . . . , cui, . . . ,un] = c[u1, . . . ,ui, . . . ,un].

Theorem 1.60 Let u1, . . . ,un−1 ∈ Vn and let Vn be an oriented vector space.
Then there exists exactly one vector u∗ ∈ V such that it holds:

1. u∗ ⊥ u1, . . . ,un−1,

2. ‖u∗‖ =
√
G(u1, . . . ,un−1),

3. if u1, . . . ,un−1 are linearly independent, <u1, . . . ,un−1,u
∗> form a pos-

itive basis of a space V.

If you choose a positive orthonormal basis B = <e1, . . . , en> of a vector
space Vn, and put

{ui}B = (u1, . . . , un), 1 ≤ i ≤ n−1,
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followed by

u∗ =

∣∣∣∣∣∣∣∣∣∣∣

u11 u12 . . . u1n
u21 u22 . . . u2n
...

...
...

un−1 1 un−1 2 . . . un−1 n

e1 e2 . . . en

∣∣∣∣∣∣∣∣∣∣∣
, (1.8)

can you demonstrate that u∗ meets the requirements of Theorem 1.60?

[Instruction: from (1.8), it follows that a vector u∗ has its coordinates (Un1, . . . ,
Unn) in B where Uij denotes an algebraic complement of the element in position
(i, j) in a given matrix. If you then consider a matrix

u11 u12 . . . u1n
u21 u22 . . . u2n
...

...
...

un−1 1 un−1 2 . . . un−1 n

x1 x2 . . . xn

 ,

it is evident that its determinant is equal to the scalar product u∗·x for any
x, {x}B = (x1, . . . , xn).]

Definition 1.61 Let u1, . . . ,un−1 ∈ Vn and let V be oriented. Then a vector
u∗ ∈ V meeting the requirements of Theorem 1.60 is called an orthogonal
product of vectors u1, . . . ,un−1 and is denoted by u1 × u2 × · · · × un−1.

Remark 1.62 Let be given vectors u1, . . . ,un−1 of the oriented vector space Vn.

• The orthogonal product is uniquely determined by vectors u1, . . . ,un−1 and
the choice of the orientation of a vector space Vn.

• If a positive orthonormal basis of V is given, the orthogonal product
u1 × · · · × un−1 is equal to the symbolic determinant (1.8).

Theorem 1.63 Let u1, . . . ,un−1 be vectors of an oriented vector space V.
Then u = u1 × · · · × un−1 if and only if the following holds for every x ∈ V:

[u1, . . . ,un−1,x] = u·x.
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Theorem 1.64 Let u1, . . . ,un−1 ∈ Vn. Then it holds:

1. ∀π ∈ Sn−1 : uπ(1) × · · · × uπ(n−1) = sgnπ(u1 × · · · × un−1),

2. ∀i, 1 ≤ i ≤ n−1, ∀ui,u′i ∈ V :
u1 × · · · × (ui + u′i) × · · · × un−1 = u1 × · · · × ui × · · · × un−1 + u1×
× · · · × u′i × · · · × un−1,

3. ∀i, 1 ≤ i ≤ n−1, ∀c ∈ R:
u1 × · · · × cui × · · · × un−1 = c(u1 × · · · × ui × · · · × un−1),

4. if the orientation of a vector space V changes, the orthogonal product
turns into the opposite vector.

Definition 1.65 In a space V3, an exterior product of three vectors is called
a mixed product while an orthogonal product of two vectors is called a cross
product.

From Theorem 1.63, it follows:

Corollary 1.66 For any vectors u1,u2,u3 ∈ V3, it holds:

[u1,u2,u3] = (u1 × u2) · u3.

Theorem 1.67 Let N⊂⊂V be a vector hyperplane and let <u1, . . . ,un−1>
be its arbitrary basis. Then a vector u1 × · · · × un−1 is a normal vector of
a hyperplane N.

Compare the properties of an orthogonal product of two vectors of V3 ac-
cording to Theorem 1.60 with the properties you used to define a vector
product in secondary school.

Example 1.68 In an Euclidean vector space V, with respect to the positive
orthonormal basis B = <e1, e2, e3, e4>, it is given:

{u1}B = (1, 0, 1, 0), {u2}B = (0, 1, 1, 0), {u3}B = (1, 1, 1, 1).

Compute an orthogonal product u1 × u2 × u3.

[Instruction: proceed according to Remark 1.62:
u1 ×u2 ×u3 = e1 + e2 − e3 − e4, which means that the orthogonal product has
the following coordinates: (1, 1,−1,−1).]
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1.3.2 Distance and deviation in the Euclidean vector space

Let us go back to Theorem 1.45 according to which every vector x ∈ V
with respect to any subspace W ⊆⊆ V can be written in one and only one
way as

x = x∗ + x⊥, kde x∗ ∈W, x⊥ ∈W⊥. (1.9)

Definition 1.69 Let W ⊆⊆ V, let x be a vector of V and let x∗, x⊥ be vec-
tors complying with (1.9). Then a vector x∗ is called an orthogonal projection
of a vector x onto a subspace W, while a vector is called a perpendicular of a
vector x to a subspace W.

Theorem 1.70 Let W ⊆⊆ V and let x be a vector of V. Then it holds:

1. An orthogonal projection of a vector x onto a subspace W is equal to
the perpendicular of a vector x to a subspace W⊥,

2. A perpendicular of a vector x to a subspace W is equal to the orthogonal
projection of a vector x onto a subspace W⊥.

Theorem 1.71 Let W ⊆⊆ V and let x be a vector of V. Then it holds:

x ∈W ⇔ x∗ = x ⇔ x⊥ = o,

x⊥W ⇔ x∗ = o ⇔ x⊥ = x.

In a space V, there exists exactly one vector for which x = x⊥ = x∗. Which
one is it?

[Use Theorem 1.71.]

Theorem 1.72 Let W ⊆⊆ V and let x be a vector of V. Then it holds:

‖x‖2 = ‖x∗‖2 + ‖x⊥‖2.

Note: The Pythagorean Theorem thus holds true in Euclidean vector spaces.
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The norm of the perpendicular will prove crucial for measuring the distance
and deviation of a vector from a subspace.

Theorem 1.73 Let N be a vector hyperplane in V and let n be its arbitrary
normal vector. Then for any vector x of V, it holds:

‖x⊥‖ =
|x · n|
‖n‖

.

Theorem 1.74 Let W be an arbitrary subspace in V and let <u1, . . . ,uk>
be some of its bases. Then for any vector x of V, it holds:

‖x⊥‖ =

√
G(u1, . . . ,uk,x)

G(u1, . . . ,uk)
.

Example 1.75 In an Euclidean vector space V, a vector x and a subspace
W = [u1,u2] are given. Find the orthogonal projection of a vector x onto
a subspace W and the perpendicular to W if in an orthonormal basis it is given:

{x} = (5, 3, 1); {u1} = (1, 2, 0), {u2} = (1, 1, 1).

[Instruction: express a vector x according to (1.9) and a vector x∗ as a linear
combination of vectors u1,u2. Then scalarly multiply the obtained identity by a
vector u1, considering that vectors u1,x

⊥ are orthogonal. Proceed in the same
way with a vector u2. You thus obtain a system of equations

xu1 = c1(u1u1) + c2(u2u1),

xu2 = c1(u1u2) + c2(u2u2).

Upon solving it, you can find c1, c2 and thereby a vector x∗.
Solution: {x∗} = (3, 4, 2), x⊥ = (2,−1,−1). ]

Definition 1.76 Let W⊆⊆V, let x be a vector of V and let x∗ be an orthog-
onal projection of a vector x onto W. Then the deviation of a vector x from
a subspace W is understood to be a number denoted by ](x,W) and defined
by the relation

](x,W) = ](x,x∗).
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Theorem 1.77 Let W⊆⊆V and let x be a vector of V. Then it holds

](x,W) ∈
〈

0,
π

2

〉
.

Theorem 1.78 Let W⊆⊆V and let x be a vector of V. Then it holds

1. ](x,W) = π
2
⇔ x ⊥W,

2. ](x,W) = 0⇔ x ∈W ∧ x 6= o.

Theorem 1.79 Let W⊆⊆V and let x be a vector of V. Then it holds

1. ‖x∗‖ = ‖x‖ cos](x,W),

2. ‖x⊥‖ = ‖x‖ sin](x,W).

Now we will use Theorems 1.73 and 1.74:

Theorem 1.80 Let N be a vector hyperplane in V and let n be its arbitrary
normal vector. Then for any vector x of V, it holds:

](x,N) = arcsin
|x · n|
‖x‖‖n‖

.

Theorem 1.81 Let W be an arbitrary subspace in V and let <u1, . . . ,uk>
be some of its bases. Then for any vector x of V, it holds:

](x,W) = arcsin

√
G(u1, . . . ,uk,x)

‖x‖
√
G(u1, . . . ,uk)

.

Example 1.82 In an Euclidean vector space V, a vector x and a subspace
W = [u1,u2] are given. Compute the deviation of a vector x of a subspace W if
in an orthonormal basis, it is given:

{x} = (5, 3, 1); {u1} = (1, 2, 0), {u2} = (1, 1, 1).

[Solution:](x,W) = arcsin 6√
210

; compare it by a direct calculation using the

result in Example 1.75.]
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The next theorem clearly shows the meaning of the notion distance of a vector
from a subspace defined in Definition 1.84.

Theorem 1.83 Let W ⊆⊆ V, x ∈ V. Then for any vector y of W, it holds:

ρ(x,y) ≥ ρ(x,x∗),

where equality happens only if y = x∗.

Definition 1.84 Let W⊆⊆V, let x be a vector of V and let x∗ be an orthog-
onal projection of a vector x onto W. Then the distance of a vector x from
a subspace W is understood to be a number denoted by ρ(x,W) and defined
by the relation

ρ(x,W) = ρ(x,x∗).

Corollary 1.85 Let W ⊆⊆ V, x ∈ V. Then it holds:

ρ(x,W) = Min{ρ(x,y)}y∈W.

Theorem 1.86 Let W⊆⊆V and x be a vector of V. Then it holds:

1. ρ(x,W) = 0⇔ x ∈W,

2. ρ(x,W) = ‖x‖ ⇔ x⊥W.

If you consider how to express the distance of a vector from a subspace using
its perpendicular, then using Theorems 1.73 and 1.74 you obtain:

Theorem 1.87 Let N be a vector hyperplane in V and let n be its arbitrary
normal vector. Then for any vector x of V, it holds:

ρ(x,N) =
|x · n|
‖n‖

.
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Theorem 1.88 Let W be an arbitrary subspace in V and let <u1, . . . ,uk>
be some of its bases. Then for any vector x of V, it holds:

ρ(x,W) =

√
G(u1, . . . ,uk,x)

G(u1, . . . ,uk)
.

Example 1.89 In an Euclidean vector space V, a vector x and a subspace
W = [u1,u2] are given. Measure the distance of the vector x from the subspace
W if in an orthonormal basis, it is given:

{x} = (5, 3, 1); {u1} = (1, 2, 0), {u2} = (1, 1, 1).

[Solution: ρ(x,W) =
√

6; compare this distance by a direct calculation with use
of the length of the perpendicular using the result in Example 1.75.]

At the end of this lesson, let us take notice of several natural applications of
the theory of distances and deviations from the point of view of the theory of
solving systems of linear equations and Euclidean geometry.

From the previous part of your linear algebra course, you know that a sys-
tem of equations

A(x1, x2, . . . , xn)T = (b1, b2, . . . , br)
T

is solvable if and only if the column vector of right-sides can be expressed as
a linear combination of column vectors of the matrix of the given system;
the coefficients of this linear combination then constitute the solution of
the system.

If we consider a system of linear equations with real coefficients, it is pos-
sible to say that an ordered n-tuple (x1, . . . , xn) is the solution of the sys-
tem if and only if the distance between vectors (A(x1, x2, . . . , xn)T ) and
(b1, b2, . . . , br)

T of an Euclidean vector space Rr is equal to zero.

In the case that the system is not solvable, it makes sense to search for such
“substitution” (x1, . . . , xn) for which the number

ρ((A(x1, x2, . . . , xn)T ), (b1, b2, . . . , br)
T )

is the smallest possible one. Based on Theorem 1.83, the next theorem
describes a method called the method of the smallest squares7, which shows
how to obtain this approximate solution.

7The name of the method comes from the fact that the distance of two vectors in Rr with
the standard scalar product is given by the relation mentioned in Corollary 1.30.
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Theorem 1.90 (method of the smallest squares)
Let A ∈ Mr×n(R) and let b ∈ Mr×1(R). If b∗ is a orthogonal projection
of a vector b onto a column subspace of a matrix A and x1, x2, . . . , xn is the
solution of the system of linear equations

A

 x1
...
xn

 = b∗ (1.10)

then for every y1, y2, . . . , yn ∈ R it holds:∥∥∥∥∥∥∥A
 y1

...
yn

− b

∥∥∥∥∥∥∥ ≥
∥∥∥∥∥∥∥A

 x1
...
xn

− b

∥∥∥∥∥∥∥
where equality happens if and only if y1, y2, . . . , yn ∈ R solves the system of
linear equations (1.10).

Example 1.91 A certain physical process is described by the functional depen-
dence y = f(x) of which it is known that it is linear. During an experiment the
following values were found

x 0 1 2
f(x) 1 5 3

.

Using the method of the smallest squares, find the parameters in the functional
rule of the given dependence so that it would best express the conducted experi-
ment.

[Instruction: Assume the functional dependence as y = ax + b. By substituting
the above pairs of values, you obtain a set of three linear equations with unknowns
a, b, which is not solvable. Proceed further according to Theorem 1.90.
Solution: y = x+ 2.]

Let us now consider an Euclidean space E with a subspace Mk given by
a point A and and let u1, . . . ,uk be a basis of a set V(M) of vectors asso-
ciated with this subspace (this set of vectors forms a vector subspace; it is
called a vector subspace associated with Mk or a direction subspace of Mk)

8.

8 Let us note that a set of vectors associated with a subspace M of the Euclidean space can
be obtained, for instance, as a set of radius vectors leading from the point A to every point of
the subspace.
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Let us take a look at the following two tasks:

– measuring the distance of an arbitrary point B from a subspace M ,

– measuring the deviation of any line p with a direction vector s from
a subspace M .

In the first case, let us imagine an orthogonal projection B∗ of a point B
onto a subspace M ; the distance ρ(B,M) is defined in geometry as equal
to the distance ρ(B,B∗). If we consider a vector B−A, a vector B∗−A is
evidently its orthogonal projection onto the direction subspace V(M); thus
it holds that ρ(B,M) = ‖B∗ −B‖ = ρ((B − A),V(M)).

In the second case, let us choose two different arbitrary points B, C on
a line p. A vector C − B = s is a direction vector of this line. Let us
construct their orthogonal projections C∗, B∗. In geometry, the deviation
](p,M) is defined as a deviation of lines BD and B∗D∗ or it is equal to π

2

in the case p⊥M (i.e. B∗ = D∗). It is evident that the vector C∗ − B∗ is
an orthogonal projection of the vector s onto the direction subspace V(M);
thus it holds that ](p,M) = = ](s,V(M)).

It follows that the corollary of Theorems 1.81 and 1.88 are the following
theorems of Euclidean geometry.

Theorem 1.92 Let M be an arbitrary subspace of the Euclidean space E
defined by a point A and let <u1, . . . ,uk> be some of the bases of its direction
subspace. Then for any point B ∈ E, it holds:

ρ(B,M) =

√
G(u1, . . . ,uk, (B−A))

G(u1, . . . ,uk)
.

Theorem 1.93 Let M be an arbitrary subspace of the Euclidean space E
defined by a point A and let <u1, . . . ,uk> be some of the bases of its direction
subspace. Then for any line p in E with a direction vector s, it holds:

](p,M) = arcsin

√
G(u1, . . . ,uk, s)

‖s‖
√
G(u1, . . . ,uk)

.

34



Both the exterior and the orthogonal vector product are also geometrically
significant. Let us mention them at least for a three-dimensional Euclidean space
E.

Theorem 1.94 Let be given a parallelepiped A1B1C1D1A2B2C2D2 in the Eu-
clidean space E3. Then for its volume, it holds:

V = |[(B1−A1), (D1−A1), (A2−A1)]|.

Theorem 1.95 Let be given a parallelogram ABCD in the Euclidean space
E3. Then for its surface, it holds:

S = ‖(B−A)× (D−A)‖.

Example 1.96 In an Euclidean space E3, there are given points A = [1, 1, 1],
B = [3, 1, 1], C = [3, 1, 3]. Measure the volume of a triangle ABC.

[Instruction: Use Theorem 1.95. Result: S=2]
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2 Homomorphisms of vector spaces

2.1 Basic notions

Students are able to define the term homomorphism of vector spaces. They
can recognize mappings that are homomorphisms of vector spaces. They
know the notions of monomorphism, epimorphism, isomorphism, endomor-
phism and automorphism, and are able to match a given homomorphism
with these terms. Students also know the notions of image and kernel of
homomorphism, and are able to find them. They can construct an ana-
lytic expression of homomorphism in selected bases and find a matrix of
a homomorphism in any pair of bases.

From the last semester, you know the notion vector space – you know that
it has to do with a set of elements (vectors) endowed with a field of scalars
and a pair of mappings – with addition of vectors and multiplication of
vectors by scalars (sc. scalar multiplication which must not be confused
with the scalar product of two vectors). We will now show that of all
the mappings which we can imagine between pairs of vector spaces (more
precisely, between their sets of vectors) the important mappings are those
that retain both mappings (they are called homomorphisms). You will see
that to some extent, they “transfer” the structure of one space onto another,
creating in some special cases of isomorphism a faithful “copy” of the former
vector space. You will learn how to express these mappings using equations
describing the coordinates of an image using the coordinates of the pattern.
You will become familiar with how to represent a homomorphism using
a matrix.

Definition 2.1 Let (V,+, T, ·) and (W,⊕, T, ◦) be vector spaces9. A map-
ping f : V → W is called a homomorphism of a vector space V to a vector
space W if it has the following properties:

1. ∀u,v ∈ V : f(u + v) = f(u)⊕ f(v),

2. ∀u ∈ V,∀t ∈ T : f(t · u) = t ◦ f(u).

Remark 2.2

• If it is not stated clearly otherwise, we will continue to consider all vector
spaces over the same field T ;

9Let us take notice that both vector spaces have the same scalar field.
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• if we know in every case to which vector space a given pair of vectors
belongs, there is no danger of misunderstanding, so we can denote vector
addition also in the latter space by the same symbol “+”. We can just the
same denote a multiplication of a vector by a scalar with the same symbol
“·”, or we can leave out this dot altogether. For the same reason, we will
also denote a zero vector in both spaces by the same symbol o;

• we will denote all vector spaces only by the symbol of the corresponding
set of vectors, i.e. instead of writing (V,+, T, ·), we will only write V.

Notation 2.1 Let V, W be vector spaces. We will denote a set of all homo-
morphisms V to W as Hom(V,W).

Example 2.3 Let V3,W3 be vector spaces over R and let us consider a mapping
f : V3 →W3 given with respect to the selected bases B, C by the rule:

∀x∈V3 : {x}B = (x1, x2, x3) 7−→ {f(x)}C = (y1, y2, y3),

where:
1. y1 = x1

y2 = 2x1 + x2
y3 = 3x1 − x3,

2. y1 = x21
y2 = 2x1 + x2
y3 = 3x1 − x3.

3. y1 = x1
y2 = 2x1 + x2 + 5
y3 = 3x1 − x3.

Is a mapping f a homomorphism in all the individual cases?
[1. yes; 2.,3. no.]

Definition 2.4 Let f ∈ Hom(V,W);

1. if f is injective, it is called a monomorphism,

2. if f is surjective, it is called an epimorphism,

3. if f is bijective, it is called an isomorphism,

4. if W = V, f is called an endomorphism of a vector space V,

5. if W = V and f is bijective, f is called an automorphism of a vector
space V.
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Definition 2.5 Let f ∈ Hom(V,W). Then

1. an image of homomorphism f is understood to be a set denoted by Imf
and defined as:

Im f = {y ∈W;∃x ∈ V : y = f(x)},

2. a kernel of homomorphism f is understood to be a set denoted by Kerf
and defined as:

Ker f = {x ∈ V; f(x) = o}.

Theorem 2.6 Let f ∈ Hom(V,W). Then

1. Im f ⊆⊆W,

2. Ker f ⊆⊆ V.

Corollary 2.7 Let f ∈ Hom(V,W). Then

1. f is an epimorphism V onto Im f ,

2. if f is a monomorphism V to W, then it is an isomorphism V onto Im f .

Example 2.8 Let V3,W4 be vector spaces R and let us consider a mapping
f : V3 →W4 given with respect to the selected bases B, C by the rule:

∀x∈V3 : {x}B = (x1, x2, x3) 7−→ {f(x)}C = (y1, y2, y3, y4),

where:
y1 = x1 + 2x2 − x3
y2 = x1 + 5x2 − 5x3
y3 = 3x2 − 4x3
y4 = x1 + 8x2 − 9x3.

Find its kernel and image.
[Ker f={x∈V, {x}B ∈ [(−5, 4, 3)]},
Im f={y∈W, {y}C ∈ [(−2,−1, 1, 0), (1, 1, 0, 1)]}.]

Theorem 2.9 Let V, W be vector spaces. If f is an isomorphism V onto
W, then f−1 is an isomorphism W onto V.
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Theorem 2.10 Let f ∈ Hom(V,W). Then it holds:

1. f is an epimorphism V onto W if and only Im f = W,

2. f is a monomorphism V to W if and only if Ker f = {o}.

According to Definition 2.1, homomorphism preserves two basic mappings
of a vector space +, ·. The next theorem shows that homomorphism pre-
serves also any linear combination of vectors. This theorem will also show
the relationships of the linear (in)dependence of origins and images.

Theorem 2.11 Let f ∈ Hom(V,W). Then it holds:

1. for every x1, . . . ,xk ∈ V and every t1, . . . , tk ∈ T , it holds:

f(t1x1 + · · ·+ tkxk) = t1f(x1) + · · ·+ tkf(xk),

2. for every x1, . . . ,xk∈V, it holds: if x1, . . . ,xk are linearly dependent,
then f(x1), . . . , f(xk) are also linearly dependent,

3. for every x1, . . . ,xk∈V, it holds: if x1, . . . ,xk are linearly independent
and if f is a monomorphism, then f(x1), . . . , f(xk) are also linearly
independent.

– Formulate a contrapositive of the statement in subsection 2.

– Find an example showing that the assumption that the homomorphism
f is injective cannot be left out in subsection 3.

Corollary 2.12 Let f ∈ Hom(V,W), U ⊆⊆ V. Then it holds:

1. a set f(U) is a subspace in W,

2. if M is a set of generators of a subspace U, then f(M) is a set of
generators of a subspace f(U),

3. if G is a set of generators of a space V, then f is an epimorphism if and
only if f(G) is a set of generators of a space W,

4. if B is a basis of a space V, then f is an isomorphism if and only if f(B)
is a basis of a space W.
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Homomorphism f : V → W, is, as a mapping, a set of ordered pairs
{(x, f(x)) ∈ V ×W,x ∈ V}. In the case of homomorphisms, however,
it is not necessary (often even impossible) to define f by a list of all these
ordered pairs – the important question is how many of these ordered pairs
it is necessary to know so that it is possible to determine the mapping
uniquely. The answer lies in the next theorem on determination of homo-
morphism.

Theorem 2.13 Let V,W be vector spaces. Then for every basis <v1, . . . ,vn>
of a vector space V and for every n-tuple of vectors w1, . . . ,wn of a vector
space W, there exists one and only one homomorphism f : V → W with the
property:

f(vi) = wi, i = 1, . . . , n.

Definition 2.14 Let V,W be vector spaces. We say that these vector spaces
are isomorphic, which we will denote as V ∼= W if there exists an isomorphism
V onto W.

Remark 2.15 Based on Theorem 2.9, we will see that the relation to be isomor-
phic is indeed symmetrical. The above definition is thus correct in this sense.

If vector spaces (V,+, T, ·) and (W,⊕, T, ◦) are isomorphic, it implies more
than just the fact that there exists a bijection between the sets V and W
of their vectors. Let f be an isomorphism V onto W. Now let us take
a look at how to add two vectors u, w belonging to W. Since based on
Theorem 2.9 and Definition 2.1

u⊕ v = f(f−1(u))⊕ f(f−1(w)) = f(f−1(u) + f−1(w)),

it is clear that this sum is fully determined by the operation + vector
addition in V.

Similarly, you will find that also the multiplication ◦ of vectors by scalars
in W is fully determined by the multiplication · in V.

We can then conclude that two isomorphic vector spaces are their mutual
“exact copies”, which we express by saying that two isomorphic vector
spaces differ only in the names of their elements.

Theorem 2.16 will give you a criterion when two vector spaces are isomor-
phic.
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See that a mapping Vn → T n, called a system of coordinates, which has
been known to you from the previous part of your linear algebra course, is
an isomorphism of the above vector spaces. Drawing on this fact, derive
the validity of the next theorem!

[Instruction: use Theorem 2.9.]

Theorem 2.16 Two vector spaces (over the same field) are isomorphic if and
only if they have the same dimension.

Definition 2.17 Let f ∈ Hom(V,W). Let B, C be, respectively, arbitrary
bases of vector spaces Vn and Wm, B = <a1, . . . ,an>. If we denote

{f(ai)}C = (ai1, ai2, . . . , ain), i=1, . . . , n,

then a matrix (aij) ∈Mn×m(T ) is called the matrix of homomorphism f with
respect to the bases B, C and is denoted by (f,B, C).

Using Theorem 2.11 (1), you can verify the validity of the next theorem.

Theorem 2.18 Let f ∈ Hom(V,W). Let B, C be, respectively, arbitrary
bases of vector spaces V and W. Then for any vector x from V, it holds:

{f(x)}C = {x}B(f,B, C),

or:
if {x}B = (x1, . . . , xn), then for f(x), it holds:

{f(x)}C = (y1, . . . , ym)⇔ ∀j, 1 ≤ j≤m : yj =
n∑
i=1

aijxi, (2.1)

where (aij)n×m = (f,B, C).

You already know that to determine a homomorphism f , it is not necessary
to know all the ordered pairs (x, f(x)). If you know the images of vectors
of some basis, you can find out the coordinates of the image of any of
the vectors using the so-called analytic expression of homomorphism with
respect to the chosen pair of bases, as we will further call the system of
equalities (2.1).

As Theorem 2.13 shows, it does not evidently make a difference if you define
a homomorphism by defining the images of the elements of a certain basis,
using a matrix of homomorphism or using an analytic expression.

42



Theorem 2.19 Let B, C be, respectively, arbitrary bases of spaces V, W.
Then a mapping HBC : Hom(Vn,Wm)→Mn×m(T ) defined by the relation

∀f ∈ Hom(V,W) : HBC(f ) = (f,B, C)

is a bijection of the above sets.

Example 2.20 Let V, W be vector spaces. Let B = <e1, e2, e3> be a basis of
a space V and let C = <b1, b2, b3> be a basis of a space W. Write an analytic
expression of homomorphism f : V→W if it holds:

f(e1) + 2f(e2) = b1 + 4b2 + 3b3
f(e1)− f(e2) + f(e3) = b1 + b2 + 2b3

f(e2) + f(e3) = b2 − b3.

[Solution: the matrix of the searched homomorphism is

 1 2 3
0 1 0
0 0 −1

. ]

Theorem 2.21 Let f ∈ Hom(V,W). Let B,B′ or C, C ′ be arbitrary bases of
a vector space V or W. Then it holds:

(f,B′, C ′) = (B,B′)(f,B, C)(C ′, C).

Theorem 2.22 Let f ∈ Hom(V,W). Let B,B′ or C, C ′ be arbitrary bases of
a vector space V or W. Then it holds:

h(f,B′, C ′) = h(f,B, C) = dim Im f.

Note: The common rank of all the matrices of a given homomorphism f is said
to be the rank of a homomorphism f.

Theorem 2.23 Let f ∈ Hom(V,W). Then it holds:

dim Ker f + dim Im f = dimV.
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Corollary 2.24 Let f ∈ Hom(V,W) and let dimV= dimW. Then the fol-
lowing conditions are equivalent:

1. f is an isomorphism,

2. f je f is an epimorphism,

3. f is a monomorphism.

Corollary 2.25 Homomorphism is an isomorphism V onto W if and only if
its matrix in one (and thus in every) pair of the bases of spaces V and W is
regular.

Theorem 2.26 Let f ∈ Hom(Vn,Wm). Then there exist, respectively, bases
B, C of spaces V, W such that the analytic expression of a homomorphism f
in these pair of bases is written as:

y1 = x1
y2 = x2

...
yr = xr
yr+1 = 0

...
ym = 0 ,

where r is the dimension of the image of a homomorphism f .

What form does the matrix of homomorphism have in the bases according
to Theorem 2.26?

Example 2.27 Let V and W be vector spaces and let consider a homomorphism
f : V → W given with respect to some chosen pair of bases by the following
analytic expression:

y1 = x1+ 2x2− x3
y2 = x1+ 5x2− 5x3
y3 = 3x2− 4x3
y4 = x1+ 8x2− 9x3

Find such a pair of bases so that the analytic expression of a given homomorphism
has the form described in Theorem 2.26.
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[Instruction: Let us denote the searched bases as B = <e1, e2, e3>, C = <b1, b2,
b3, b4>, respectively. Consider that the kernel of a homomorphism f is a subspace
in V whose every element is mapped on a zero vector. Thus, first find the basis
of the kernel Ker f . Its vectors form the elements of the basis B “from the
back to the front”. Complete the basis of Ker f arbitrarily in a basis of a space
V, which will give you a basis B. In this specific case, dim Ker f = 1; thus,
its basis is a vector e3 which we will then complete with vectors e1 and e2 in
the B. Now map vectors of the basis B not belonging to the kernel Ker f in a
homomorphism f . According to Theorem 2.12, these vectors generate Im f and
their number is equal to the dimension of Im f according to Theorem 2.23 – they
are thus linearly independent. Let us then denote b1 = f(e1), b2 = f(e2) and
subsequently arbitrarily complete vectors b1, b2 in the basis CC of a space W.

Consider the definition of the matrix of homomorphism. Then it is clear that

(f,B, C) =

 1 0 0 0
0 1 0 0
0 0 0 0

 ,

and the analytic expression thus has the required form.]
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2.2 Vector space of homomorphisms; composition of ho-
momorphisms

Students are able to define the structure of a vector space on a set of homo-
morphisms. They can determine the matrix of a sum of homomorphisms
and a scalar multiple of homomorphisms. They know the relation between
a vector space of homomorphisms and the isomorphic structure of matrices,
and are able to use the relations between these two isomorphic structures.
Students can also compose homomorphisms and determine the matrix of
a composition of homomorphisms.

In the previous lesson, you became familiar with a set of homomorphisms
of a vector space V to a vector space W. Now you will demonstrate how to
naturally define an addition of homomorphisms and a scalar multiplication
of homomorphism, thereby obtaining the structure of a vector space on
a set Hom(V,W). You will then learn the properties of a map assigning
to every homomorphism its matrix with respect to the chosen basis. In
the previous part of your linear algebra course, you learned that a set
of matrices, along with matrix addition and scalar multiplication of the
matrix, forms a vector space. You will now see that this vector space is
isomorphic to the constructed vector space of homomorphisms.

You will then learn how to compose homomorphisms.

Described operations with homomorphisms will elucidate the naturalness of
the definitions of matrix addition, matrix multiplication and scalar multi-
plication of the matrix with which you became familiar in the last semester.

2.2.1 Vector space of homomorphisms

Definition 2.28 Let f, g ∈ Hom(V,W), t ∈ T . Then the sum of homomor-
phisms f and g denotes a mapping f + g : V→W defined by the relation

∀x ∈ V : (f + g)(x) = f(x) + g(x),

a scalar t-multiple of a homomorphism f denotes a mapping tf : V → W
defined by the relation

∀x ∈ V : (tf)(x) = tf(x).

Verify the validity of the axioms of a vector space for a set Hom(V,W)
along with addition of homomorphisms and scalar multiplication of a ho-
momorphism.
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Theorem 2.29 A set Hom(V,W), along with addition of homomorphisms
and scalar multiplication of a homomorphism, forms a vector space over a
field T .

Note: A zero element of a vector space Hom(V,W) is the so-called zero homo-
morphism o defined for every x from V by the relation o(x) = o.

Theorem 2.30 Let f, g ∈ Hom(V,W), t ∈ T . Then for arbitrary bases B,
C, respectively, of spaces V, W, it holds:

(f + g,B, C) = (f,B, C) + (g,B, C),
(tf,B, C) = t(f,B, C).

If you consider Theorem 2.19, you obtain:

Theorem 2.31 Let B, C be bases, respectively, of spaces V, W. Then a map-
ping HBC : Hom(Vn,Wm)→Mn×m(T ) defined by the relation

∀f ∈ Hom(V,W) : HBC(f ) = (f,B, C)

is an isomorphism of vector spaces Hom(Vn,Wm) a Mn×m(T ).

For arbitrary admissable (i, j), denote a matrix of Mn×m(T ) whose ele-
ments are zero except precisely the element in position (i, j) which is equal
to 1, by a symbol Eij.

Every matrix of Mn×m(T ) can evidently be written as a linear combination of
the matrices of a set

E = <E11, E12, . . . , E1n, . . . , En1, En2, . . . , Enm>,

which can be done in exactly one way. A set E is thus the basis of a vector space
Mn×m(T ).

It is shown in the following example:(
1 2 −1
0 8 7

)
= 1

(
1 0 0
0 0 0

)
︸ ︷︷ ︸

E11

+2

(
0 1 0
0 0 0

)
︸ ︷︷ ︸

E12

−1

(
0 0 1
0 0 0

)
︸ ︷︷ ︸

E13

+8

(
0 0 0
0 1 0

)
︸ ︷︷ ︸

E22

+7

(
0 0 0
0 0 1

)
︸ ︷︷ ︸

E23

.

Based on Theorem 2.31, you obtain:
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Corollary 2.32 Let V, W be vector spaces. Then it holds:

1. dim Hom(V,W) = dimV. dimW,

2. if B, C are bases, respectively, in spaces Vn, Wm and if we define for
every i, j, 1 ≤ i ≤ n, 1 ≤ j ≤ m, a homomorphism eij by the relation
(eij,B, C) = Eij, then a set

<e11, e12, . . . , e1n, . . . , en1, en2, . . . , enm>

is the basis of a vector space Hom(V,W),

3. if B, C are bases, respectively, in spaces Vn, Wm, then it holds:

(f,B, C) = (aij)n×m ⇐⇒ f =
∑
1≤i≤n
1≤j≤m

aijeij.

Remark 2.33

• Drawing on Theorem 2.30, you can see that matrix addition is naturally de-
termined by addition of homomorphisms. Similarly, you can see that scalar
multiplication of matrices is naturally determined by a scalar multiplication
of homomorphisms.

• Based on Corollary 2.32, subsection 3, it is evident that the elements of the
matrix of homomorphism have also another significance – their significance
lies in the fact that they may be considered as the coordinates of a given
homomorphism in the basis according to subsection 2.
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2.2.2 Composition of homomorphisms

The second part of this lesson is devoted to the composition of homomor-
phisms. We can compose two homomorphisms as any other mappings10. It
is, however, important that compositing homomorphisms results in homo-
morphism.

Theorem 2.34 Let U, V, W be vector spaces. Then for any homomorphisms
f ∈ Hom(U,V), g ∈ Hom(V,W), it holds that f ◦ g ∈ Hom(U,W).

Theorem 2.35 Let U, V, W be vector spaces, f ∈ Hom(U,V), g ∈
∈ Hom(V,W). Then if B, C,D are arbitrary bases, respectively, in spaces
U, V, W, it holds:

(f ◦ g,B,D) = (f,B, C)(g, C,D).

Remark 2.36 Drawing on Theorem 2.35, you can see that matrix multiplication
is naturally determined by the composition of homomorphisms.

Corollary 2.37 Let f ∈ Hom(U,V) be an isomorphism and let B, C be
arbitrary bases, respectively, in spaces U, V. Then it holds:

(f−1, C,B) = (f,B, C)−1.

Theorem 2.38 Let U, V, W be vector spaces. Then for arbitrary homomor-
phisms f, g ∈ Hom(U,V), h, k ∈ Hom(V,W) and t ∈ T , it holds:

1. (f + g) ◦ h = f ◦ h+ g ◦ h,
2. f ◦ (h+ k) = f ◦ h+ f ◦ k,
3. (tf) ◦ h = t(f ◦ h) = f ◦ (th).

What are the corollaries of Theorem 2.38 for operations with matrices?

10In this text, a combination of two mappings α, β will be consistently denoted as:

(α ◦ β)(x) = β(α(x)).
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2.3 Endomorphisms of a vector space

Students are able to define a ring structure and a linear algebra structure on
a set of endomorphisms in a vector space. Knowing the relation between a
ring or linear algebra of endomorphisms nad the corresponding isomorphic
matrix structures, they can make use of the relations between these iso-
morphic structures. They can also recognize the automorphism of a vector
space and are able to construct a group structure in a set of automorphisms.
They know the relation between this group and the corresponding matrix
structure isomorphic to it. Students are also able to define the notion of
the projection of a vector space and to distinguish a projection between
different endomorphisms.

In one of the previous lessons (Definition 2.4), you became familiar with the
notion of endomorphism of a vector space as a homomorphism of a vector
space to itself. In the last lesson, you learned how to add homomorphisms,
how to multiply them by a scalar, and how to compose them. Now you will
demonstrate that endomorphisms of a given vector space form a ring. A
mapping assigning to an endomorphism its matrix with respect to the cho-
sen basis forms an isomorphism of this ring onto the matrix ring. You will
further learn the structure of linear algebra endomorphisms, of a group of
automorphisms and, in both of these cases, of matrix structures isomorphic
to them.
You will become familiar with projections of a vector space onto a subspace
such as endomorphisms mapping a vector space on some of its subspaces
and thus on a lower dimension vector space11, which endows projections
with wide practical significance.

Notation 2.2 Let V be a vector space. Then a set of endomorphisms of a vector
space V (and thus a set Hom(V,V )) will be denoted by End(V). The matrix of
endomorphism f in the basis B will be denoted only by (f,B).

Verify the validity of axioms of the ring for the set End(V) along with
addition and composition of homomorphisms.

Theorem 2.39 Let V be a vector space. A set End(V), along with addition
of endomorphisms + and composition of endomorphisms ◦, forms a ring with
a unit which is an identical endomorphism id. This ring is not generally
commutative.

The next theorem is a corollary of Theorems 2.30 and 2.35.

11With the exception of the trivial case of identity.
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Theorem 2.40 Let B be an arbitrary basis of a space V. Then the mapping
HB : End(Vn)→Mn×n(T ) defined by the relation

∀f ∈ End(V) : HB(f ) = (f,B)

is an isomorphism of the rings (End(Vn),+, ◦) a (Mn×n(T ),+, ·).

Definition 2.41 Let A be a set, T be a field, and let be given mappings

+: A× A→ A, ◦ : A× A→ A, · : T × A→ A,

where

1. A along with mappings +, · is a vector space over T ,

2. A along with mappings +, ◦ is a ring with a unit element,

3. ∀a, b ∈ A,∀t ∈ T : t · (a ◦ b) = (t · a) ◦ b = a ◦ (t · b).

Then a set A with the above mappings is called a linear algebra over a field T .
The order of an algebra A is understood to be the dimension of A as a vector
space.

Definition 2.42 Let A and B be a linear algebra over the same field. Let
us say that a linear algebra A is isomorphic to a linear algebra B if there is
a mapping H : A → B which is simultaneously an isomorphism of A a B as
both vector spaces and rings.

The following two theorems follow from Theorems 2.29, 2.31, 2.38, 2.39 and
2.40.

Theorem 2.43 A set End(V), along with addition and composition of endo-
morphisms as well as a multiplication of an endomorphism by a scalar of T ,
forms a linear algebra over a field T whose order is equal to (dimV)2.

Theorem 2.44 Let B be some base of a space Vn. Then a mapping HB
assigning to every endomorphism its matrix with respect to the basis B is
an isomorphism of linear algebras End(V) and Mn×n(T ).

Let us now have a look at a special case of endomorphisms, namely of
automorphisms of a given vector space (see Definition 2.4).
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Notation 2.3 Let V be a vector space. Then a set of automorphisms of a vector
space V (i. e. a subset of the set End(V)) will be denoted by Aut(V).

Verify the validity of group axioms for a set Aut(V) along with composition
of the mapping.

[Among others, use Theorem 2.9.]

Theorem 2.45 Let V be a vector space. The set Aut(V), along with compo-
sition of automorphisms, forms a group.

Note: A group (Aut(V), ◦) is called a linear group of a vector space V.

From Corollary 2.25, it follows:

Theorem 2.46 Endomorphism is an automorphism of a space V if and only
if its matrix in one (and thus in every) basis of a space V is regular.

Corollary 2.47 A group of automorphisms of a vector space Vn is isomorphic
to a multiplicative group of regular matrices of an order n over a field T .
Let B be some basis of a space Vn. Then a mapping HB assigning to every
endomorphism its matrix with respect to the basis B is an isomorphism of
groups (Aut(V), ◦) and (Ln×n(T ), ·).

Using Corollary 2.12 and comparing the definitions of the matrix of a ho-
momorphism and of the transition matrix, derive the validity of the next
theoreom!

Theorem 2.48 Let f be an endomorphism and let B be some basis in a space
V. Then f is an automorphism of a vector space V if and only if the set C,
C = f(B), is the basis of a space V. In such case, it holds:

(B, C) = (f,B).

If you imagine an intuitively understood notion of the projection of a 3-
dimensional vector space onto some of its 2-dimensional subspace parallel
to the chosen direction, you can see that the next definition is its natural
generalisation.
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Definition 2.49 Let U,W ⊆⊆ V be such that V = U⊕W. Then a mapping
denoted as pUW and defined by

∀x∈V, x = xW + xU , xW∈W,xU∈U : pUW (x) = xW ,

is called a projection of a vector space V onto a subspace W parallel to a sub-
space U.

Remark 2.50 Since the sum V = U ⊕W is direct, the mapping pUW is defined
correctly.

Theorem 2.51 Let pUW be a projection of a vector space V. Then for every
x from V it holds:

1. pUW (x) = o if and only if x ∈ U,

2. pUW (x) = x if and only if x ∈W.

Corollary 2.52 Every projection pUW of a space V is an surjection V onto
W.

Corollary 2.53 Let pUW be a projection of a vector space V. Then it holds:

1. pUW = idV ⇔ U = {o} ⇔W = V,

2. pUW = o⇔W = {o} ⇔ U = V.

Theorem 2.54 Every projection of a space V is an endomorphism of a space
V.

Theorem 2.55 Let p be a projection of a space V. Then p is a projection V
onto Im p parallel to Ker p.

Theorem 2.56 Let p be an endomorphism of a space V. Then p is a projec-
tion if and only if it holds:

1. V = Ker p⊕ Im p,

2. p| Im p = idIm p
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Theorem 2.57 Let p be an endomorphism of a space V. Then p is a projec-
tion if and only if it holds:

p ◦ p = p.

Corollary 2.58 Let p be an endomorphism of a space V. Then p is a pro-
jection if and only if in an arbitrary (and thus in every) basis B of a space V,
it holds:

(p,B)2 = (p,B).

Example 2.59 Find a projection p of a space V over R for which it holds:

p(ui) = vi, i = 1, 2,

if in the chosen basis B of a space V, it is given:

{u1}B=(1, 2, 1,−1), {u2}B=(3, 0, 0, 1), {v1}B=(1, 2, 0, 0), {v2}B=(1, 1, 1, 1).

[Instruction: consider that vectors v1,v2 belong to Im p and use Theorem 2.56.

Solution:

(p,B) =
1

11


3 4 2 2
4 9 −1 −1
2 −1 5 5
2 −1 5 5

 .]
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2.4 Eigenvalues and eigenspaces of endomorphisms of vec-
tor spaces

Students can define the terms eigenvalue and eigenvector of an endomor-
phism of a vector space. They can also find eigenvalues and eigenspaces for
a given endomorphism. They know the relation between the multiplicity
of an eigenvalue as a root of characteristic polynomial and the dimension
of an eigenspace. Students know how to apply criteria to make sure that
endomorphism is diagonalisable. The can define and find eigenvalues and
eigenspaces of a square matrix.

In a number of areas of mathematics (for instance, in geometry, mathe-
matical analysis and statistics) and their applications, it is important for
a given endomorphism to know vectors determining the same direction as
their images. We will call such non-zero vectors eigenvectors and in this
chapter, we will learn how to look for them. You will learn that a set of
vectors that are mapped through an endomorphism on its certain scalar
multiple forms a subspace and that in some cases, a vector space is equal
to the direct sum of such subspaces.

Definition 2.60 Let f be an endomorphism of a vector space V. If it holds
for a scalar λ ∈ T and a non-zero vector x ∈ V

f(x) = λx,

we say that λ is an eigenvalue of an endomorphism f while x is an eigenvector
of an endomorphism f corresponding to an eigenvalue λ.

A set of all eigenvalues of an endomorphism f is called the spectrum of
an endomorphism f and is denoted by Specf .

Note: The terms characteristic value and characteristic vector are also used.

Notation 2.4 Let f be an endomorphism in a vector space V and let λ be some
of its eigenvalues. Then the symbol Nλ denotes the following set:

Nλ = {x ∈ V; f(x) = λx}. (2.2)
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Theorem 2.61 Let f be an endomorphism in a vector space V and let λ be
some of its eigenvalues. Then it holds:

1. Nλ ⊆⊆ V, Nλ = Ker(f − λ id),

2. if B is some basis of V, then x ∈ V is an eigenvector of endomorphism
f corresponding to λ if and only if its coordinates in the basis B are
a non-trivial solution of a system of linear homogeneous equations with
a matrix (f,B)T − λE.

Definition 2.62 Let f be an endomorphism in a vector space V and let λ
be some of its eigenvalues. Then a set Nλ defined by relation (2.2) is called
an eigenspace of an endomorphism f corresponding to an eigenvalue λ.

Corollary 2.63 Let f be an endomorphism in a vector space V, let λ be some
of its eigenvalues and let B be an arbitrary basis.
If we denote (f,B) = (aij)n×n, then a vector x, {x}B = (x1, . . . , xn), belongs
to an eigenspace Nλ if and only if

(a11 − λ)x1 + a21x2 + · · ·+ an1xn = 0
a12x1 + (a22 − λ)x2 + · · ·+ an2xn = 0

...
a1nx1 + a2nx2 + · · ·+ (ann − λ)xn = 0

(2.3)

The previous theorem gives an instruction how to find eigenvectors of an
endomorphism f for a given λ. It remains to find eigenvalues of a given
endomorphism. If we consider that eigenvectors are non-zero, what we are
looking for is a non-trivial solution of a system of equations (2.3). From the
previous part of your linear algebra course, you know that its existence is
equivalent to a singularity of the matrix of the system. Hence, Theorem 2.65
gives instruction for finding eigenvalues λ.

Definition 2.64 Let f be an endomorphism in a vector space V and let
B be an arbitrary basis of this space. Then a characteristic polynomial of
an endomorphism f is understood to be a polynomial chf (x) ∈ T [x] defined
by the relation

chf (x) = det( (f,B)− xE ). (2.4)
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Make sure that the characteristic polynomial of a given endomorphism does
not depend on the choice of a basis B, namely that Definition 2.64 is correct
in this sense.

[Instruction: use Theorem 2.21.]

Theorem 2.65 Let f be an endomorphism in a vector space V. Then the
spectrum of endomorphism f is equal to a set of roots of its characteristic
polynomial.

If we go back also to Theorem 2.46, then we have:

Corollary 2.66 Let f be an endomorphism in a vector space V. Then the
spectrum of an endomorphism f is a set of exactly those λ ∈ T for which an
endomorphism f−λid is not an automorphism of a space V.

Example 2.67 In a certain basis B of a space V over R, let be given an endo-
morphism f by a matrix A and an endomorphism g by a matrix B.

A =

 3 0 2
1 1 1
−1 0 0

 , B =

 1 −3 4
4 −7 8
6 −7 7

 .

Find eigenvalues and eigenspaces of both endomorphisms.

[First compute the characteristic polynomial of any of given endomorphism ac-
cording to (2.4). For an endomorphism f , we obtain chf (x) = −(x− 1)2(x− 2),
i.e. Specf = {1, 2}. Then for every eigenvalue, assemble a system of linear
equations (2.3) and solve it. Thus you obtain an eigenspace for every eigenvalue.

Solution: For an endomorphism f , we obtain: Spec f = {1, 2}, N1 = [(1, 0, 2),
(0, 1, 1)], N2 = [(1, 0, 1)]. For an endomorphism g: Spec g = {−1, 3}, N−1 =
= [(−2, 1, 0)], N3 = [(1,−1, 1)].]

Theorem 2.68 Let λ1, . . . , λr be mutually different eigenvalues of an endo-
morphism f in some vector space V. If we denote N1, . . . ,Nr as corresponding
eigenspaces, it holds:

N1 + · · ·+ Nr = N1 ⊕ · · · ⊕Nr.
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Corollary 2.69

1. Every eigenvector corresponds to one and only one eigenvalue of a given
endomorphism.

2. Eigenvectors corresponding to different eigenvalues of the same endo-
morphism are linearly independent.

Theorem 2.70 Let f be an endomorphism in a vector space V, let λ be some
of its eigenvalues and let nλ be its multiplicity as a root of the characteristic
polynomial chf (x). Then for the dimension of the eigenspace Nλ, it holds:

dimNλ ≤ nλ.

Take notice that the dimension of an eigenspace does not actually have to be
equal to mutiplicity – see endomorphism g in Example 2.67.

Definition 2.71 An endomorphism f in a vector space V is called diagonal-
isable if there exists a basis B of a space V such that the matrix (f,B) is
diagonal.

A question arises which endomorphisms are diagonalisable. The following
three theorems bring certain criteria which we can used here. From the
second of these theorems and from Example 2.67, it follows that there
are endomorphisms which are not diagonalisable (an endomorphism f is
diagonalisable, while an endomorphism g is not).

It thus generally does not hold that for every endomorphism there exists
a basis such that the matrix of an endomorphism over this basis is diagonal.

Theorem 2.72 An endomorphism f in a vector space V is diagonalisable if
and only if there exists a basis B of a space V formed by eigenvectors of an
endomorphism f .
A diagonal of a matrix (f,B) is in this case formed by eigenvalues of an en-
domorphism f ; each of them is situated on a diagonal as many times as cor-
responding to the multiplicity of root of the characteristic polynomial chf (x).

Theorem 2.73 An endomorphism f in a vector space V is diagonalisable if
and only if a vector space V is equal to the sum of all eigenspaces of endo-
morphism f .
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Theorem 2.74 If an endomorphism f is diagonalisable, then for each of its
eigenspace Nλ, it holds that the dimension of Nλ is equal to the multiplicity
λ as a root of the characteristic polynomial.
For endomorphisms in vector spaces over C, the converse theorem also holds.

Remark 2.75 Analogously12, we can arrive at the notions of eigenvector, eigen-
value and eigenspace of a matrix A ∈Mn×n(T ):

• If for a scalar λ ∈ T and a non-zero vector x ∈ T n, it holds

x.A = λx,

we say that λ is an eigenvalue of a matrix A and x is an eigenvector of
a matrix A corresponding to an eigenvalue λ.

• A subspace Nλ ⊆⊆ T n,

Nλ = {x ∈ T n;x.A = λx},

is called an eigenspace of a matrix Acorresponding to an eigenvalue λ.

12It is enough to consider an arithmetic vector space V = Tn and to define for the chosen
matrix A an endomorphism f by the rule f(x) = x .A which enables us to transfer the prop-
erties of eigenvectors/eigenvalues/eigenspaces of an endomorphism onto these notions used for
matrices.
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2.5 Homomorphisms of Euclidean vector spaces

Students are able to define the notions of orthogonal projection and orthog-
onal homomorphism (isometries). They can determine an orthogonality of
a given projection or homomorphism. They are able to apply the proper-
ties of orthogonal projections or homomorphisms when constructing these
mappings. They know the relation between a group of orthogonal auto-
morphisms and the corresponding multiplicative matrix group. They know
necessary and sufficient conditions for a given mapping to be an orthogonal
homomorphism, and are able to distinguish isomorphic Euclidean vector
spaces.

In Chapter 1.2, you learned that an Euclidean vector space is equal to the
direct sum of its arbitrary subspace and its orthogonal complement. If
you use the information in Chapter 2.3, you can examine projections whose
kernel and image are mutually orthogonal complements. These projections,
called orthogonal projections, have a number of applications in geometry
and other areas of mathematics.

In Chapter 2.1, you became familiar with the isomorphism of vector spaces
and could see that in this case, the second of a pair of isomorphic vector
spaces is only a “copy” of the first one because isomorphism determines
the elements as well as both operations of the second vector space. In
the case of Euclidean vector spaces, we will introduce the notion of the
orthogonal isomorphism (isometry or Euclidean isomorphism) which also
preserves scalar product apart from addition of vectors and multiplication
of vectors by a scalar. You will see that in the case when two Euclidean
vector spaces are orthogonally isomorphic, the latter of them is again a
“copy” of the former one.

2.5.1 Orthogonal projection

Let us go back to Definition 2.49 and Theorem 1.45. Then it is evident that
it holds:

Theorem 2.76 Let W be a subspace of an Euclidean vector space V. Then
a projection pW

⊥
W assigns to every vector x of V its orthogonal projection onto

a subspace W.

Definition 2.77 Let W be a subspace of an Euclidean vector space V. Then
a projection pW

⊥
W is called an orthogonal projection of a space V onto a subspace

W and is denoted by pW .
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A mapping assigning to each vector of V its orthogonal projection onto a sub-
space W – an orthogonal projection – is thus a special case of projection (and
thus an endomorphism) – it is a projection V onto W parallel to W⊥.

Theorem 2.78 Let p be an arbitrary projection of an Euclidean vector space
V onto some of its subspaces. Then p is an orthogonal projection if and only
if

∀x,y ∈ V : p(x) · y = x · p(y).

Lemma 2.79 Let p be an endomorphism of an Euclidean vector space V and
let B be an arbitrary orthonormal basis. Then it holds:

[∀x,y ∈ V : p(x) · y = x · p(y)]⇔ [(p,B)T = (p,B)].

Theorem 2.80 Let p be an arbitrary projection of an Euclidean vector space
V onto some of its subspaces. Then p is an orthogonal projection if and only
if in some (and thus in every) orthonormal basis B of a space V, it holds:

(p,B)T = (p,B).

Example 2.81 Find an orthogonal projection p of a space V onto a subspace
W = [v1,v2] if in the chosen orthonormal basis B of a space V, it is given:

{v1} = (1, 2, 0, 0), {v2} = (1, 1, 1, 1).

[Instruction: consider what is the kernel and image of the searched projection
and where the vectors belonging to its kernel and image are mapped. It is also
possible to solve this example differently using, for instance, Corollary 2.58 and
Theorem 2.80 – verify it!
Solution:

(p,B) =
1

11


3 4 2 2
4 9 −1 −1
2 −1 5 5
2 −1 5 5

 .]
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2.5.2 Orthogonal homomorphisms

Definition 2.82 Let (V, ·) and (W,�) be Euclidean vector spaces. A ho-
momorphism f : V→W is called orthogonal (or isometric or Euclidean) if it
holds:

∀x,y ∈ V : x · y = f(x)� f(y).

Remark 2.83 If there is no danger of misunderstanding, we denote a scalar
product in different Euclidean vector spaces by the same symbol “·”, or we leave
it without any notation altogether.

Consider Definition 1.8 of the vector norm, Definition 1.11 of the angle
between vectors, and Definition 1.15 of the distance of vectors. Then you
can easily derive the following corollary from Definition 2.82. You will later
see that subsections (1) and (3) are not only necessary but also sufficient
condition of the orthogonality of homomorphism.
Will it be the same in the case of subsection (2)? [No; explain why not!]
Theorem 2.85 then follows from subsection 2.84 (3).

Corollary 2.84 Let f : V →W be an orthogonal homomorphism. Then for
every x,y of V, it holds:

1. ‖f(x)‖ = ‖x‖,
2. ](f(x), f(y)) = ](x,y),

3. ρ(f(x), f(y)) = ρ(x,y).

Theorem 2.85 Every orthogonal homomorphism is a monomorphism.

Hence from this theorem and from Theorem 2.24, it follows:

Theorem 2.86 If dimV = dimW, then every orthogonal homomorphism
V→W is an isomorphism V onto W. Especially, every orthogonal endomor-
phism of a vector space is an automorphism of this space.

Remark 2.87 An example of an orthogonal isomorphism is the Cartesian coor-
dinate system of an Euclidean vector space (it is an orthogonal isomorphism Vn
onto Rn endowed with the standard scalar product).

You will also easily find that every orthogonal isomorphism Vn onto Rn en-
dowed with the standard scalar product is a Cartesian coordinate system.
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Let us go back to Corollary 2.12 (4). You should also realise that due to
Corollary 2.84, an orthogonal homomorphism maps an orthonormal set of
vectors once again onto an orthonormal set. Finally, if some homomorphism
maps an orthonormal basis once again onto an orthonormal basis, then with
respect to Theorem 1.27, you can easily find by a direct calculation that
the next theorem is indeed an equivalence.

Theorem 2.88 Let f be a homomorphism V to W and let B be an arbitrary
orthonormal basis of a space V. Then f is an orthogonal isomorphism V onto
W if and only if f(B) is the orthonormal basis of a space W.

Corollary 2.89 Let U, V, W be Euclidean vector spaces. Then it holds:

1. if f is an orthogonal isomorphism U onto V, then f−1 is an orthogonal
isomorphism V onto U,

2. if f is an orthogonal homomorphism U to V and g is an orthogonal
homomorphism V to W, then f ◦ g is an orthogonal homomorphism U
to W.

It is natural to ask how easy it is to find whether a given homomorphism
is or is not orthogonal. If you consider again Theorem 2.88, the definition
of the matrix of homomorphism 2.17, definition of matrix multiplication as
well as the Cartesian formula for the scalar product, you can easily verify
the validity of the following criterion.

Theorem 2.90 Let f be a homomorphism V to W, and let B, C be arbitrary
orthonormal bases, respectively, of spaces V, W. Then f is an orthogonal
homomorphism V to W if and only if

(f,B, C)(f,B, C)T = E.

Remember that the assumption of orthonormality cannot be left out in any
of the bases!

From Theorem 2.90 and Corollary 2.89, it follows:
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Corollary 2.91

1. A set of orthogonal automorphisms of an Euclidean vector space V, along
with composition of homomorphisms, forms a group which is a subgroup
of a group of automorphisms of a vector space V.

2. A group of orthogonal automorphisms13is isomorphic to a multiplicative
group of orthogonal matrices of order n.
If B is an orthonormal basis of a space Vn, then a mapping HB assign-
ing to every endomorphism its matrix with respect to the basis B is an
isomorphism of the above groups.

The following four theorems provides other necessary and sufficient condi-
tions for a homomorphism or a mapping to be an orthogonal homo-, or an
isomorphism. Compare their contents with the conditions of orthogonality
of homomorphism in Definition 2.82 and with Corollary 2.84.

Using the identity (x + y)(x + y) = xx + 2xy + yy, verify the validity of
the first of the following theorems!

[Instruction: from this identity, derive the relation for the norm of the sum
of vectors and the norm of the sum of their images.]

Theorem 2.92 Let f be a homomorphism V to W. Then f is an orthogonal
homomorphism V to W if and only if for every x of V, it holds:

‖f(x)‖ = ‖x‖.

Theorem 2.93 Let f be a homomorphism V to W. Then f is an orthogonal
homomorphism V to W if and only if for every x, y of V, it holds:

ρ(f(x), f(y)) = ρ(x,y).

Theorem 2.94 Let f be a bijection V onto W. Then f is an orthogonal
isomomorphism V onto W if and only if for every x, y of V, it holds:

f(x)f(y) = xy.

13A group of orthogonal automorphisms is called an orthogonal (or isometric) group of a given
vector space; it is thus a subgroup of the so-called linear group of a space Vn – cf. Theorem 2.45.
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Theorem 2.95 Let f be a bijection V onto W. Then f is an orthogonal
isomomorphism V onto W if and only if it holds:

1. f(o) = o,

2. ∀x, y ∈ V : ρ(f(x), f(y)) = ρ(x,y).

Example 2.96 Find all orthogonal homomorphisms f : V→W for which

u 7→ v,

if in the chosen orthonormal bases B, C, respectively, of spaces V, W, it is given:

{u}B = (−
√

2,
√

2), {v}C = (0,−2).

[Instruction: consider the validity of Theorem 2.90.
Solution: there exist exactly two orthogonal homomorphisms given by the fol-
lowing matrices

1

2

(√
2
√

2√
2 −
√

2

)
, resp.

1

2

(
−
√

2
√

2

−
√

2 −
√

2

)
]

Definition 2.97 Let V,W be Euclidean vector spaces. Let us say that the
above Euclidean vector spaces are isomorphic if there exists an orthogonal
isomorphism V onto W.

The attribute Euclidean in the phrase Euclidean vector spaces are isomor-
phic needs to be emphasised. Precisely to distinguish this homomorphism
from a common homomorphism of vector spaces, the term orthogonally (or
Euclidean) isomorphic vector spaces or isometric vector spaces is sometimes
also being used.

Remark 2.98 Drawing on Corollary 2.89, we can see that the relation to be
orthogonally isomorphic is indeed symmetric. The newly introduced definition is
thus correct in this sense.

You already know that if vector spaces (V,+, T, ·) and (W,⊕, T, ◦) are
isomorphic, it does not only mean that there is a bijection between sets
V and W of their vectors: in Section 2.1, we showed that also addition
of vectors ⊕ and multiplication of vectors by the scalar ◦ in the second
of the spaces are fully determined by the corresponding operations in the
first space. This is what you were talking about when you were saying that

69



apart from naming vectors, there is no need to distinguish between these
vector spaces.

Let us now consider two isomorphic Euclidean vector spaces

((V,+,R, ·), •) and ((W,⊕,R, ◦),�)

and let f is a corresponding orthogonal isomorphism V onto W. Let us
now look at scalar product of two vectors belonging to W. Since drawing
on Corollary 2.89 and Definition 2.82, we can write

u�w = f(f−1(u))� f(f−1(w)) = f−1(u) • f−1(w),

you can see that this scalar product is fully determined by the scalar product
• in V. It is then possible to say that (also) two isomorphic Euclidean
vector spaces are their mutual “exact copies”. The phrase two isomorphic
Euclidean vector spaces differ from one another only in the names of their
elements is thus being justifiably used.

From Definition 2.97, it is clear that if two Euclidean vector spaces are
orthogonally isomorphic, they are isomorphic as vector spaces. Hence, ac-
cording to Theorem 2.16, they have the same dimension. Justify the con-
verse statement! [Instruction: look at Remark 2.87.] You will thus prove
the next theorem (compare it with Theorem 2.16 !).

Theorem 2.99 Two Euclidean vector spaces are isomorphic if and only if
they have the same dimension.
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3 Factor vector spaces

Students know the notion of factor vector space. They can tell whether
two vectors are congruent modulo a subspace and are able to construct
a factorization to a given subspace and to find its basis and determine
its dimension. They are able to apply the theorem on homomorphism to
determine all homomorphic images of the chosen vector space and to use the
theory of factor vector spaces to construct an affine space and its subspaces.

In your algebra course, you became familiar with the relation of equivalence
on a set and learned how to construct a decomposition (factorisation) of
this set to the chosen equivalence. Using this knowledge, you will now
learn how to assign to any chosen subspace of a vector space the relation
of equivalence (congruence) so that it will be possible to construct a vector
space structure in the set of the formed classes (linear manifolds).

You will see that the theorem on homomorphism of sets can be extended to
vector spaces. You will learn that the affine space, known to you from geom-
etry, can be obtained also through factorization of a vector space according
to its subspaces.

The symbol V will continue to denote an arbitrary n-dimensional vector space
over a field T .

Definition 3.1 Let K ⊆⊆ V, a∈V. Then a set denoted by a + K defined
by the relation

a + K = {x ∈ V ; ∃y ∈K : x = a + y}

is called a linear manifold of a space V determined by a vector a parallel to K.

Remark 3.2 Let us consider a 2-dimensional vector space V, its one-dimensional
subspace (direction) K and an arbitrary vector a ∈ V (see the figure below).
Then a linear manifold a+K is equal to a set of vectors whose end points lie on
the dotted line.

Remark 3.3
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1. Directly from Definition 3.1, it follows that for every x of V, it holds:

x ∈ a + K⇔ x− a ∈K.

2. A manifold a+K should not be generally identified with a subspace [a]+K.
(Consider this! What would a subspace [a] + K be equal to in the case
described in Remark 3.2?)

We will now define a certain relation for every subspace K on a set V. We
will then show that it is exactly the equivalence which decomposes a set V
into a set of exactly all linear manifolds parallel to K.

Definition 3.4 Let K ⊆⊆ V, a, b∈V. We say that a vector a is congruent
to a vector b modulo K which we denote as a ≡ b (modK) if a vector b− a
belongs to K.

It needs to be specified with respect to which subspace K the considered
vectors are congruent – if we simultaneously work with several different
subspaces in V, we always must consistently add “modK ” to the symbol
a ≡ b. Only if it is evident which subspace we have in mind, we can write
only a ≡ b.

Derive the validity of the following lemma.

Lemma 3.5 Let K⊆⊆V. Then it holds:

1. ∀a ∈ V : a ≡ a (modK),

2. ∀a, b ∈ V : a ≡ b (modK)⇒ b ≡ a (modK),

3. ∀a, b, c ∈ V : (a ≡ b (modK) ∧ b ≡ c (modK))⇒ a ≡ c (modK).

Thus:

Theorem 3.6 The relation “to be congruent modulo K” is for every subspace
K ⊆⊆ V a relation of equivalence on a set V.

Theorem 3.7 Let K⊆⊆V, a,x ∈ V. Then it holds:

x ∈ a + K⇔ x ≡ a (modK).
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Let us take another look at how to obtain a quotient set of the relation of
equivalence14. In this way, you obtain the already mentioned important state-
ment:

Corollary 3.8 Let K⊆⊆V, a ∈ V. Then a linear manifold a+K is an equiv-
alence class of a set V of the relation “to be congruent modulo K” determined
by an element a.

Based on this corollary, Definition 3.4 and the already familiar properties of
quotient sets (thus, in our case, a quotient of a set V by the ≡ (modK)), you
obtain the following statement:

Theorem 3.9 Let K⊆⊆V. Then for every a, b of V it holds:

1. ∀a, b ∈ V : (a + K = b + K)⇔ (b− a) ∈K,

2. ∀a ∈ V : (a + K = K)⇔ a ∈K,

3. ∀x,y,a ∈ V : (x ∈ a + K ∧ y ∈ a + K)⇔ (y− x) ∈K.

Choose K⊆⊆V. Then you can construct a quotient set of V by the equiv-
alence relation ≡ (modK) – a set of exactly all manifolds of a space V
parallel to K. Let us denote this so-called factor set by the symbol V/K.
It then holds:

V/K = {{x ∈ V ; ∃y ∈K : x = a + y},a ∈ V} = {{a + K},a ∈ V}.

On this set, we want to construct a vector space structure over T – that
is, we want to define an addition of manifolds and a multiplication of the
manifold by a scalar:

(i) Let us choose a + K, b + K ∈ V/K and let us put

(a + K) + (b + K) = (a + b) + K. (3.1)

(ii) Let us choose a + K ∈ V/K, t ∈ T and let us put15

t · (a + K) = (t · a) + K. (3.2)

14An equivalence class defined by, for instance, an element a is a set of exactly all elements
which are equivalent to it.

15We usually leave out the symbol “·” and write only t(a + K).
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Using relations (3.1) and (3.2), demonstrate that the definitions of opera-
tions +, · are correct; that is, that the result of both operations does not
depend on the choice of vectors determining given manifolds (the so-called
manifold representative) – a manifold c + K can be after all determined
also by a different vector c.

[Instruction: between two vectors c, c determining the same manifold,
there must be a relation following from Theorem 3.9 (1). Then it is enough
to compare the manifolds that are understood to be the result of the sum
of manifolds or of the t-multiple of the manifold.]

Definition 3.10 Let K⊆⊆V and let be given a + K, b + K ∈ V/K and
t ∈ T . Then

1. the sum of linear manifolds a+K and b+K is understood to be a linear
manifold denoted by (a+K)+(b+K) and defined by the relation (3.1),

2. the (scalar) t-multiple of a linear manifold a + K is understood to be
a linear manifold denoted by t · (a + K) and defined by the relation
(3.2).

Verify if (V/K,+, T, ·) meets the axioms of a vector space where a zero
manifold is a manifold o+K while the opposite manifold to a linear mani-
fold a+K is a manifold ((−a)+K). Derive for which vectors b a manifold
b + K is a zero manifold16.

Theorem 3.11 Let K⊆⊆V. Then a set V/K, along with addition of linear
manifolds and multiplication of a linear manifold by a scalar from T , forms a
vector space over a field T .

Definition 3.12 Let be given K⊆⊆V. Then a vector space (V/K,+, T, ·) is
called a factor vector space of a vector space V to a subspace K (or a factori-
sation of a vector space V to a subspace K or a quotient of the vector space
V by a subspace K).

Now let us take a closer look at the relation between a vector space V and
its factorisation V/K.

16[Solution: b+K is a zero manifold if and only if b ∈ K.]
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From the theory of quotient sets, you know that a mapping ν assigning to
an element of a given set an equivalence class determined by this element is
a surjection of a given set onto its quotient (so-called natural or canonical
mapping). Furthermore, if you take into consideration Definition 3.10, you
can see that a natural mapping is also a homomorphism V onto V/K – we
are thus ready to formulate Definition 3.13.

Let us subsequently take another look at the theorem on homomorphism
of sets according to which: (1) every surjection f of the chosen set V onto
a certain set W induces on a set V an equivalence relation ≈ making the
elements with the same image in a mapping f equivalent; (2) a surjection
f can be decomposed in exactly one way into a natural mapping ν of a set
V onto its quotient set V/≈ and a bijection g of this quotient set onto a set
W .

Now let us choose two vector spaces V, W and an epimorphism
f : V→W, and let us apply the theorem on homomorphism of sets. Since
f is a homomorphism, we can easily find that:

∀u,v ∈ V : (u ≈ v)⇔ (u− v ∈ Ker f)⇔ (u ≡ v(mod Ker f)),

i.e. this induced equivalence on V is exactly the relation ≡ (mod Ker f)
according to Definition 3.4. Using Definition 3.10 of operations with linear
manifolds, we can see that a bijection g for which g ◦ νKer f = f , preserves
these operations and is thus a bijective homomorphism.

In summary, you have found that the following definition is correct and
that Theorem 3.14 is valid.

Definition 3.13 Let be given K ⊆⊆ V. A mapping νK : V → V/K defined
by the relation

∀a ∈ V : νK(a) = a + K

is called a natural (or canonical) homomorphism corresponding to a factori-
sation V/K.
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Theorem 3.14 (on homomorphism of vector spaces)
Let V, W be vector spaces. Then for every epimorphism f : V → W, there
exists one and only one isomorphism g : V/Ker f →W such that

g ◦ νKer f = f,

or the following diagram commutes:

If you replace in the previous theorem the word epimorphism with the word
homomorphism and the word isomorphism with the word monomorphism,
you again obtain a valid, although more general statement. Explain why it
is so!

[Instruction: see Corollary 2.7]

The above theorem makes it possible to describe all – apart from isomorphisms
– homomorphic images of a given vector space:

Corollary 3.15 Apart from isomorphism, a set of all homomorphic images
of a given vector space is equal to the set of all its factorisations according to
its respective subspaces.

We will now focus on determining the dimension and finding the basis of
a factorisation V/K. For determining the dimension, it is essential that

Im νK = V/K.

Then using Theorem 2.23, you obtain Theorem 3.16.

To find some bases of a factorisation V/K, we will proceed from the evident
fact that a linear manifold determined by a linear combination of vectors
is a linear combination of manifolds defined by these vectors with the same
coefficients [why?]. Hence, you can see that linear manifolds determined
by vectors of an arbitrary basis of a space V form a set of generators of
a factorisation V/K. Realize which manifolds are determined by vectors
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belonging to a subspace K and construct a basis B of a space V by comple-
menting an arbitrary basis of a subspace K. The number of non-zero linear
manifolds determined by elements of such a basis B is then according to
Theorem 3.16 equal to the dimension of a factorisation V/K. The validity
of Theorem 3.17 has thus been confirmed.

Theorem 3.16 Let be given K ⊆⊆ V. Then it holds:

dimV/K = dimV− dimK.

Theorem 3.17 Let be given K ⊆⊆ V. Let 〈e1, . . . , en−k〉 be an arbitrary
system of vectors complementing some basis of a subspace K to a basis of a
space V. Then

〈e1 + K, . . . , en−k + K〉

forms the basis of a factor vector space V/K.
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Remark 3.18 One of the applications of the theory of factor vector spaces is the
construction of the affine space (which you know, probably in a different form,
from geometry):
If a vector space V is given, we can construct an affine space A with an associated
vector space V, i.e. A = A(V) in the following way:

• points of an affine space A will be understood to be just all one-element
subsets in V (i.e. all factorisations V to a trivial subspace) – as seen, for
instance, in A = {a}, B = {b}, where a, b ∈ V, are points in A;

• lines of an affine space A will be understood to be just all factorisations
V to its one-dimensional subspaces, as seen, for instance, in p = a + K,
q = b+L, where a, b ∈ V, K,L ⊆⊆ V, dimK = dimL = 1 are lines in A;
p is a line defined by a point A = {a} and a direction K, q is a line defined
by a point B = {b} and a direction L;

generally:

• k-dimensional affine subspaces of an affine space A, 0 ≤ k ≤ n, will be
understood to be just all factorisations V to its k-dimensional subspaces, as
seen, for instance, in K = a + K, L = b + L, where a, b ∈ V, K,L ⊆⊆ V,
dimK = dimL = k are k-dimensional subspaces in A; K is a subspace de-
fined by a point A = {a} with a direction subspace K, and L is a subspace
defined by a point B = {b} with a direction subspace L;

• a relation of incidence is a set inclusion, which means that a point A = {a}
lies in a subspace L = b + L if and only if {a} ⊆ b + L, i.e. a− b ∈ L.

The figure accompanying Remark 3.2 thus presumably shows a dotted line defined
by a point A = {a} and a direction K, with a point Y1 = {y1 +a} being one of
its points because y1 ∈K.

Example 3.19 In a vector space V4, there are given a subspace K = [u,v] and
a vector x ∈ V:

{u} = (1, 2, 1, 1), {v} = (2, 0, 0, 1) and {x} = (1,−2, 2,−1).

Determine the dimension of a factor vector space V/K and find at least one of
its bases; then determine the coordinates of a manifold x + K in this basis.

[Instruction: For the computation of the dimension, use Theorem 3.16. To con-
struct a basis C of the factorisation, proceed according to the guide prior to
Theorem 3.16. Consider that a manifold x + K has in a basis C = 〈e1 + K,
e2 + K〉 coordinates x1, x2 if and only if x− (x1e1 + x2e2) ∈K.
Solution:

• dimV/K = 2,
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• C is, for instance, 〈(0, 0, 1, 0) + K, (0, 0, 0, 1) + K〉,
• {x + K}C = (3,−1). ]
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4 Dual vector spaces

Students can define a dual vector space and know the notion of linear form.
On a set of linear forms, they are able to define a vector space structure.
They know the notion of dual basis and are able to construct a basis dual
to a given basis of a vector space. Finally, they can assign a linear form to
a vector from a given vector space and vice versa.

In Chapter 2, you became familiar with a special kind of mapping between
vector spaces over the same field of scalars, namely with homomorphisms of
vector spaces. We will now look at a special case of homomorphism. Since
every field can be seen as a (1-dimensional) vector space over itself, for a
vector space V over a field T , we can consider homomorphisms Hom(V, T )
called linear forms. It is their properties that will be discussed in this
chapter.

The symbol V denotes an arbitrary n-dimensional vector space over a field T .

Definition 4.1 Let V be a vector space over T . Then

1. a vector space Hom(V, T ) is called a dual vector space of a space V and

is denoted by Ṽ ;

2. every element f of Ṽ is called a linear form on V.

Remark 4.2
• A linear form on V is then every mapping f : V → T with the following

properties:

1. ∀u,v ∈ V : f(u + v) = f(u) + f(v),

2. ∀u ∈ V, ∀t ∈ T : f(tu) = tf(u).

• A dual vector space Ṽ is a set of exactly all linear forms on V along with
addition of linear forms and multiplication of a linear form by a scalar (See
Definition 2.28).

• The notion of linear form is also used in the theory of polynomials where
it is understood to be a homogeneous first degree polynomial. As you will
see, a linear form in the sense of our definition is exactly such mapping
V→ T whose analytic expression is a homogeneous first degree polynomial
– it is thus a linear form in the sense of the theory of polynomials where
indefinites are the coordinates of a vector from V.

Since a linear form is a special case of homomorphism, many of its properties
are only a specialisation of the general terms and of one of the theorems
on homomorphism which you learned in Chapter 2. We will present only
some of these statements (find the corresponding theorems in Chapter 2!).
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Theorem 4.3 Let V be a vector space. Then it holds:

dim Ṽ = dimV.

Theorem 4.4 For every basis B = 〈u1, . . . ,un〉 of a vector space V and for
every ordered n-tuple (a1, . . . , an) of scalars from T , there exists one and only
one linear form f on V with the property:

f(ui) = ai, i = 1, . . . , n. (4.1)

Remark 4.5 As for the choice of a basis of T as a vector space, we implicitly
assume that the chosen basis is 〈1〉.

The matrix of a linear form f with respect to a basis B, which is clearly
a column vector (a1, . . . , an)T with elements given by the relation (4.1), is denoted
only by (f,B).

Theorem 4.6 Let f be a linear form on V and let B be an arbitrary basis of
a space V. Then for every x from V, it holds:

f(x) = {x}B(f,B),

or if {x}B = (x1, . . . , xn) and B = 〈u1, . . . ,un〉, then

f(x) = a1x1 + a2x2 + · · ·+ anxn,

where f(ui) = ai, i = 1, . . . , n.

Theorem 4.7 A dual vector space Ṽn is isomorphic to an arithmetic vector
space T n.

If B is a basis of a space V, then a mapping HB defined by the relation

∀f ∈ Ṽ : HB(f) = (f,B)

is an isomorphism of a vector space Ṽn onto T n.

The following theorem follows also from the theory of solving systems of linear
homogeneous equations.
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Theorem 4.8 Let f be a linear form on V. Then it holds:

1. f = o, if and only if Ker f = V,

2. f 6= o, if and only if dim Ker f = n− 1.

For a space Hom(Vn,Wm), you can construct a certain basis – see Corol-

lary 2.32. Now let us construct its special case for a space Ṽ . Let us choose
a basis B of a space V,

B = 〈e1, . . . , en〉.

Since in our case m = 1, we will denote the elements, i.e. linear forms,
forming the respective basis of a space Ṽ not by 〈e11, e21, . . . , en1〉, but
(respectively) by

〈ẽ1, ẽ2, . . . , ẽn〉. (4.2)

The above linear forms (so-called coordinate linear forms) fulfil the relation
(verify it!)

∀i, 1 ≤ i ≤ n : ẽi(ek) = δik, k = 1, . . . , n. (4.3)

The term coordinate linear form follows from the following series of equali-
ties where for arbitrary x ∈ V, {x}B = (x1, . . . , xn), and chosen i,
i = 1, . . . , n, we can write:

ẽi(x) = ẽi

( n∑
k=1

xkek

)
=

n∑
k=1

xk ẽi(ek)
(4.3)
= xi.

Definition 4.9 Let B = 〈e1, . . . , en〉 be a basis of a space V. Then a system
of linear forms 〈ẽ1, ẽ2, . . . , ẽn〉 defined by the relation (4.3) is called a basis of

a space Ṽ dual (or reciprocal) for a basis B and will be denoted by B̃.

From Theorem 4.4, it follows:

Theorem 4.10 Let B = 〈e1, . . . , e2〉 be a basis of a space V and let

G = 〈g1, . . . , gn〉 be a basis of a space Ṽ . Then a basis G is a basis dual
for a basis B if and only if

∀i, 1 ≤ i ≤ n : gi(ek) = δik, k = 1, . . . , n.
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We have shown how to assign a basis of a space Ṽ to a given basis of
a space V. Does that mean that the set of all the bases of a dual space Ṽ
is exhausted by this procedure?

Using the definition of the transition matrix and the relations (4.3), you obtain
the following theorem:

Theorem 4.11 Let B, C be bases of a space V. Then it holds:

(C̃, B̃) = (B, C)T .

Corollary 4.12 Every basis of a space Ṽ is dual for one and only one basis
of a space V.

From Corollary 2.32 (3), it follows:

Theorem 4.13 If B is a basis of a space V, then for an arbitrary linear form
f , it holds:

(f,B) = (a1, . . . , an)⇔ {f}B̃ = (a1, . . . , an).

In other words: In the chosen basis, a linear form f has the analytic expression
f(x) = a1x1 + · · ·+ anxn if and only if f = a1ẽ1 + · · ·+ anẽn.

Corollary 4.14 If B is a basis of a space V, then a mapping β : V → Ṽ
defined by the rule

∀a ∈ V : β(a) = f ⇔ {f}B̃ = {a}B

is an isomorphism of a vector space V onto Ṽ .

Note: For instance, if a vector a in the chosen basis has the coordinates (1, 8,−2),
then an isomorphism β assigns to it a linear form f with the analytic expression
f(x) = x1 + 8x2 − 2x3.

Theorem 4.15 Let f, g be linear forms on V. Then it holds that Ker f ⊆Ker g
if and only if there exists c ∈ T such that g = cf .
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Remember that the order of the forms cannot be interchanged – in the case
that g is a zero form and f a non-zero one, it is not possible to express f
as a c-multiple of a form g.

Example 4.16 On a vector space V3, there are given linear forms g1, g2, g3.
Decide whether G = 〈g1, g2, g3〉 is a basis of a space Ṽ and if so, find a basis of
a space V for which a basis G is dual if in the chosen basis B of a space V, it is
given:

g1(x) = x1 + 2x2

g2(x) = x1 − x2 + x3

g3(x) = 2x1 + x2.

[Instruction: In order to find if G forms a basis, realise the meaning of coefficients
of the analytic expression of the linear form according to Theorem 4.13. Then
proceed as in case of, for instance, arithmetic vectors.
In order to find a basis in V for which G is dual, use Theorem 4.10.

Solution: Yes, it is a basis. Namely, it is a basis dual for a basis C = 〈c1, c2, c3〉,
where

{c1}B = (−1
3
, 2
3
, 1), {c2}B = (0, 0, 1), {c3}B = (2

3
,−1

3
,−1).]
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5 Pseudo-inverse matrices and homomorphisms

Students can define the notion of pseudo-inverse matrix (both general and
Moore–Penrose one) and are able to find pseudo-inverse matrices to a given
matrix. They know the connections between the theory of pseudo-inverse
and the theory of homomorphisms or the theory of systems of linear equa-
tions. They can apply the theory of pseudo-inverse when constructing
an optimal approximate solution of a system of linear equations.

In the previous part of your linear algebra course, you became familiar with
the notion of inverse matrix to a given regular matrix. In this lesson, you
will learn how to generalise the above notion for an arbitrary matrix. You
will also learn how the properties of pseudo-inverse matrices relate to the
solvability of systems of linear equations, and will become familiar with
another method to approximately solve systems of linear equations. In ad-
dition, you will learn how to generalise the notion of inverse homomorphism
also for any homomorphism.

5.1 Pseudo-inverse matrices

In case when A is a regular square matrix over a filed T , there exists
a matrix inverse with respect to it, denoted by the symbol A−1. It is a (one
and only) matrix with the property:

AA−1 = A−1A = E. (5.1)

In this chapter, we will properly generalise the concept of inverse matrix
by introducing the notion of pseudoinverse matrix – regardless of not only
the regularity or singularity of square matrices but also regardless of any
matrix type.

Let A ∈ Mn×n(T ) be a regular matrix and let us consider a following
system of linear equations:

AxT = cT , (5.2)

where c ∈ T n.

The (unique) solution of this system is evidently a vector x = (x1, x2, . . . xn),

xT = A−1cT . (5.3)

The relation (5.1) further implies the identity

AA−1A = A. (5.4)

Let us continue to consider a general matrix A, namely

A ∈Mm×n(T ), (5.5)
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and a system of m linear equations with n unknowns

AxT = cT , (5.6)

where c ∈ Tm. This system is solvable for some c while remaining unsolv-
able for other c17.

We have seen that in the case of regular matrices, there exists a (one and
only) matrix B for every matrix A with the property that ABA = A. We
have also seen that it means that (for any c ∈ T n) a vector in the form
xT = BcT is the solution of the system (5.6).

This leads us to the following consideration:

(i) Let A ∈Mm×n(T ) and let there exists a B ∈Mn×m(T ) such that

ABA = A. (5.7)

Let further c ∈ Tm such that the system (5.6) is solvable for it – let u ∈ T n
be some of its solutions, i.e. AuT = cT . Then we can write:

A(BcT ) = (AB)cT = (AB)(AuT ) = (ABA)uT
(5.7)
= AuT = cT .

We see that a vector x, xT = BcT , is a (another) solution of the system
(5.6).

(ii) Now let us consider that to a matrix A ∈ Mm×n(T ), there exists
a matrix B ∈ Mn×m(T ) such that for every c ∈ Tm for which the system
(5.6) is solvable, an ordered n-tuple x, xT = BcT , be one of its solutions.
Does the identity (5.7) hold true in this case?

For an arbitrary i = 1, . . . , n let us denote by the symbol ei an ordered
n-tuple with an i-component equal to 1 and other components equal to 0.
By multiplying an arbitrary matrix by a vector ei from the left, we obtain
its i-th row. By multiplying and arbitrary matrix by a vector eTi from the
right, we obtain its i-th column.

If we denote a column i of a matrix A by a(i), it then holds

AeTi = a(i), (5.8)

i.e. for cT = a(i), the system (5.6) is solvable. According to our assumption,
however, it means that it holds that

A(Ba(i)) = a(i), (5.9)

for i = 1, . . . , n which means that we can write:

(ABA)eTi = (AB)(AeTi ) = (AB)a(i) = A(Ba(i))
(5.9)
= a(i).

17See the Frobenius theorem.
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The obtained system of equalities (ABA)eTi = a(i), 1 ≤ i ≤ n, implies
that all the columns in matrices ABA and A are the same, which means
that the two matrices are equal. It can thus be said that (5.7) holds.

Theorem 5.1 Let A ∈Mm×n(T ). Then it holds:

1. if there exists a matrix B ∈ Mn×m(T ) such that ABA = A, then it
holds that for every c ∈ Tm for which a system AxT = cT is solvable,
an n-tuple x, xT = BcT , belongs to a set of its solutions;

2. if there exists a matrix B ∈ Mn×m(T ) such that for every c ∈ Tm for
which a system AxT = cT is solvable, an n-tuple x, xT = BcT , belongs
to a set of its solutions, then it holds that ABA = A.

From the above considerations it follows that the notion of pseudo-inverse
matrix can be fittingly defined in the following way:

Definition 5.2 Let a matrix A ∈Mm×n(T ) be given. Then a pseudo-inverse
matrix to a matrix A is understood to be every matrix A−, A− ∈ Mn×m(T ),
with the property:

AA−A = A. (5.10)

Note: the symbol A− is read as “A minus”; apart from the term pseudo-inverse
matrix, two other terms, generalised inversion and g-inversion, are sometimes
also used.

Remark 5.3 From the definition of pseudo-inverse matrix, it follows that in the
case when A is a regular matrix, there exists exactly one matrix A− and it holds
that A− = A−1.

In the case when A is a zero matrix of the m × n type, a matrix A− is any
matrix of the n×m type.

A pseudo-inverse matrix to a given matrix (if it exists) does not generally
have to be unique, which is why the symbol minus does not denote a mapping
Mm×n(T ) to Mn×m(T ).

Is there a pseudo-inverse matrix to every matrix? Let us consider a matrix
A ∈ Mm×n(T ). Then based on Theorems 2.26 and 2.21, there exists a
matrix D = (dij) of the same type such that for every i, j, 1 ≤ i ≤ m,
1 ≤ j ≤ n, it holds

(i 6=j ⇒ dij = 0) and dii ∈ {0, 1},
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and regular matrices B ∈Mm×m(T ), C ∈Mn×n(T ) with

A = BDC. (5.11)

If we consider the definition of matrix multiplication, we will easily find
that it holds (think it over!):

D = DDTD. (5.12)

Now it is evident that if we put

X = C−1DTB−1,

then by using (5.11) and (5.12), we obtain:

AXA = (BDC)(C−1DTB−1)(BDC) = (BD)(CC−1)DT(B−1B)(DC) =

= B(DDTD)C = BDC = A.

A matrix X thus meets the requirements put on a pseudo-inverse matrix
A− (see (5.10)).

Theorem 5.4 To every matrix there exists at least one pseudo-inverse ma-
trix.

What implications does the above theorem have for the solving of linear
equations?

Example 5.5 A matrix A z M3×3(R) is given:

A =

 1 0 3
0 1 1
2 −1 5

 .

Find pseudo-inverse matrices to A.

[Instruction: Denote the searched matrix by A− = (bij)3×3. From relation (5.10),
you obtain a system of linear equations for elements bij. You have surely noticed
that a matrix A is singular, which means that there exists more than one pseudo-
inverse matrix.

Solution: A pseudo-inverse matrix to a matrix A is every matrix having the
following form:

A− =

 1− 3b31 − 2b13 −3b32 + b13 b13
−2b23 − b31 1 + b23 − b32 b23

b31 b32 0

, b13, b23, b31, b32 ∈ R.]
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5.2 Moore-Penrose pseudoinverse. Optimal approximate
solution of systems of linear equations

Students can define the Moore-Penrose pseudo-inverse matrix. They are
able to find a Moore-Penrose pseudo-inverse matrix to a given matrix. Stu-
dents can define an optimal approximate solution of systems of linear equa-
tions, know its properties and are able to apply this knowledge to find the
optimal approximate solution for a given system of equations. They are fa-
miliar with the Moore-Penrose pseudo-inverse homomorphism and are able
to construct it for a given homomorphism. Students know the connections
between the theory of Moore-Penrose pseudoinverse and the theory of pro-
jections of vector spaces onto a subspace.

In the previous chapter, you became familiar with the notion of pseudo-
inverse matrix which is not generally unique to a given matrix. In this
chapter, you will become familiar with a special case of pseudoinversion
in the case of real matrices – a Moore-Penrose matrix which is uniquely
assigned to a given matrix. You will see how to use the above matrix to
look for certain approximate solutions of systems of linear equations (you
have already become familiar with one method, see Theorem 1.90). You
will also learn how to generalise the notion of inverse homomorphism to see
that in the case of Euclidean vector spaces, it is possible to construct it not
only to isomorphisms.

5.2.1 Moore-Penrose pseudo-inverse matrix

Definition 5.6 Let be given a matrix A ∈ Mm×n(R). Then a Moore-
Penrose pseudo-inverse matrix to a martix A is understood to be a matrix A+,
A+ ∈Mn×m(R), with the following properties:

1. A+ is a pseudo-inverse matrix to A (tj. AA+A = A),

2. A is a pseudo-inverse matrix to A+ (tj. A+AA+ = A+),

3. matrices AA+ i A+A are symmetric.

Note: the symbol A+ is read as “A plus”; for matrix A+, only the term the
Moore-Penrose matrix is sometimes used.

Realise that we define the Moore-Penrose matrix only for matrices over real
numbers.

What significance do the matrix products P=AA+ and Q=A+A have?
Using subsections 1 and 2 of Definition 5.6, you will easily find that matrices
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P, Q are idempotent, which means that with respect to subsection 3, the
above definition and according to Corollary 2.58 and Theorem 2.80, these
matrices represent matrices of orthogonal projections p, q, respectively, of
spaces Rm, Rn, respectively, with the standard scalar product.
In an arithmetic vector space, a homomorphism whose image is equal to
the row subspace of a given matrix C, is given by the following formula
[why?]:

f(x) = xC.

With regard to Theorem 2.35, you can see that Im p is included in the
row subspace of a matrix A+ and Im q is included in the row subspace of
a matrix A.

You know from the linear algebra course that the rank of the product of
arbitrary matrices is lower than or equal to the rank of any of the matrices18.
Using Definition 5.2, try to verify that specially for the product of a matrix
and its pseudo-inverse matrix, this particular relation of ranks becomes an
equality. This is why the images of both projections are equal to the above
row subspaces.

Lemma 5.7 Let A be a real matrix to which there exists a matrix A+. Then
it holds:

1. (AA+) is a matrix of an orthogonal projection of space Rm onto a row
subspace of a matrix A+,

2. (A+A) is a matrix of an orthogonal projection of space Rn onto a row
subspace of a matrix A.

If you consider that by transposition, a row subspace of a given matrix turns
into a column one, it then is possible to derive the following from the definition
of Moore-Penrose matrix:

Lemma 5.8 Let A be a real matrix to which there exists a matrix A+. Then
it holds:

1. a column subspace of a matrix A is equal to the row subspace of a ma-
trix A+,

2. a column subspace of a matrix A+ is equal to the row subspace of a ma-
trix A.

18If you have forgotten this fact, derive it from, for instance, Theorem 2.35.
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Remark 5.9 Let a matrix A ∈ Mm×n(R) be given. Now let us describe the
construction of a matrix A+. Let us denote the basis of column subspace of
a matrix A by B = 〈b(1), b(2) . . . b(r)〉 and let us denote a matrix formed by the
above columns by F, i.e. F ∈ Mm×r(R). Let us then express any of columns
a(1),a(2) . . .a(n) of a matrix A as a linear combination of elements of a basis B:

a(1) = g11b
(1) + g12b

(2) + · · ·+ g1rb
(r)

a(2) = g21b
(1) + g22b

(2) + · · ·+ g2rb
(1)

. . .

a(n) = gn1b
(1) + gn2b

(1) + · · ·+ gnrb
(1)

and let us construct a matrix G = (gij), G ∈Mn×r(R).
You can see that the Moore-Penrose matrix to a matrix A is given by the

relation
A+ = G(G TG)−1(F TF)−1F T . (5.13)

Is the Moore-Penrose matrix to a given matrix unique? If we consider a real
matrix A of the m×n type, an orthogonal projection of a space Rn onto its
row subspace and an orthogonal projection of a space Rm onto its column
space are thereby without a doubt unequivocally determined – that means
that their matrices Q, P are also unequivocally determined in accordance
with Lemmas 5.7 and 5.8. If A∗ is also a Moore-Penrose matrix to a matrix
A, it will have to hold

(A+A) = Q = (A∗A) and (AA+) = P = (AA∗),

from which you can derive A∗ = A+, using subsections 1 and 2 of Defini-
tion 5.2 (try it!).

Theorem 5.10 To every real matrix, there exists one and only Moore-Penrose
pseudo-inverse matrix.

In Section 1.3, you learned how to find an approximate solution of the
system of linear equations

A(x1, x2, . . . , xn)T = (b1, b2, . . . , br)
T ,

which we called the method of the smallest squares (see Theorem 1.90). Let
us recall that we tried to find such arithmetic vectors x = (x1, x2, . . . , xn)
for which the value

ρ((A(x1, x2, . . . , xn)T ), (b1, b2, . . . , br)
T )
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would be lowest possible.

Now we will show another method of approximate solution of systems of
linear equations which will try to minimise not only the value ‖AxT − bT‖
but also the length of this approximate solution, i.e. the value ‖x‖. This
approximate solution can be defined in the following way:

Definition 5.11 Let be given a system of linear equations

AxT = bT , (5.14)

where A ∈ Mm×n(R), b ∈ Rm. An arithmetic vector x0 ∈ Rn is called
an optimal approximate solution of a system of linear equations (5.14) if:

1. for every x, x ∈ Rn, it holds:
∥∥AxT − bT

∥∥ ≥ ∥∥AxT0 − bT
∥∥ ,

2. if for some x, x ∈ Rn, x 6= x0, it holds:
∥∥AxT − bT

∥∥ =
∥∥AxT0 − bT

∥∥,
then ‖x0‖ < ‖x‖ .

For a b for which (5.14) is solvable, the n-tuple xT=A−bT is one of its solu-
tions according to Theorem 5.1. What role in particular does the solution
xT0 =A+bT play? If x is also the solution of the system (5.14), it is possible
to write:

x0 = b(A+)T = (xAT )(A+)T = x(A+A), i.e. x0 = q(x).

As we know, q is an orthogonal projection, which means that according
to Theorem 1.72, it holds that x 6= x0 : ‖x0‖ < ‖x‖. This means that
x0 = b(A+)T meets both requirements of Definition 5.11.19

And what significance does x0 = b(A+)T have in an general case (that is,
when b is an arbitrary vector from Rm and thus even such when the system
is unsolvable)? For the product AxT0 , we can write:

x0A
T = b(A+)TAT = b(AA+)T = b(AA+), i.e. (x0A

T ) = p(b),

which means – since p is an orthogonal projection – that according to Lem-
mas 5.8 and 5.7, (x0A

T ) belongs to the column subspace of a matrix A.
It also means that according to Theorem 1.83, requirement 1 of Defini-
tion 5.11.

Similar considerations will also show that for any x for which ‖AxT −b‖ =
= ‖AxT0 −b‖ (which implies that xAT = x0A

T ) the vector x0 meets also
requirement 2 (try it!).

19The first requirement is met trivially.

96



Theorem 5.12 Let (5.14) be a system of linear equations with a matrix
A ∈Mm×n(R). Then an arithmetic vector x0 ∈ Rn given by the relation

xT0 = A+bT (5.15)

is the optimal approximate solution of the system of linear equations (5.14).

Theorem 5.13 If the system of linear equations (5.14) is solvable, then an
arithmetic vector x0 given by the relation (5.15) is such solution of this system
that has the smallest possible length of all its solutions.

Note: This solution of a given system is called an optimal or minimal solution;
for this solution, the value

∑n
i=1 x

2
i is the smallest possible of all the solutions.
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5.2.2 Moore-Penrose homomorphism

As you saw in Chapter 2.1, there exists an inverse mapping only for these
homomorphisms that are isomorphisms. Let us then generalise the notion of
isomorphism so that it is possible to construct a certain generalised mapping
for every homomorphism.

Let us consider Euclidean vector spaces V, W and a homomorphism
f : V→W. Let us further denote:

V(1) = Ker f, V(2) = V⊥(1), W(2) = Im f, W(1) = W⊥
(2). (5.16)

Since V = V(1)⊕V(2) (and f is a homomorphism), it holds for the restriction
of f to V(2) that Im(f |V(2)) = Im f and Ker f |V(2) = {o}, which means that
f |V(2) is an isomorphism V(2) onto W(2).

Let us consider an orthogonal projection pW(2)
of a space W onto a subspace

W(2).

Therefore the following composition gives a homomorphism f+ : W→ V:

f+ = pW(2)
◦ (f |V(2))

−1 (5.17)

A homomorphism f+ can be equivalently expressed by the formula:

∀x ∈W, x=x1+x2, x1 ∈W1,x2 ∈W(2) :

(f+(x) = y)⇔ (f(y) = x2, y ∈ V(2)). (5.18)

Definition 5.14 Let V,W be Euclidean vector spaces and let a homomor-
phism f : V →W be given. Then a homomorphism f+ : W → V defined by
the relation (5.17) is called a Moore-Penrose pseudo-inverse homomorphism
of a homomorphism f .

Similarly to the case of the Moore-Penrose matrix, we can refer to this type
of homomorphism as only the Moore-Penrose homomorphism.

Remark 5.15 From the considerations prior to Definition 5.14, it follows that f+

is an epimorphism if and only if f is a monomorphism and that it is a monomor-
phism if and only if f is an epimorphism. It is evident that f+ is an inverse
homomorphism to f , i.e. .f+ = f−1 if and only if f is an isomorphism.

Theorem 5.16 Let V, W be Euclidean vector spaces. For every homomor-
phism f : V→W there exists one and only one Moore-Penrose pseudo-inverse
homomorphism f+ : W→ V.
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Remark 5.17 The Moore-Penrose pseudo-inverse homomorphism depends on
the choice of the scalar products in both vector spaces – if we change some of them,
we generally obtain a different homomorphism f+ to the chosen homomorphism
f (cf. Remark 1.2).

By use of the relations (5.16) and (5.17), or (5.18), demonstrate that for
the chosen homomorphism f and its Moore-Penrose homomorphism f+, it
holds:

- f ◦ f+◦ f = f,

- f+◦ f ◦ f+ = f+,

- f ◦ f+ is an orthogonal projection of V onto V(2),

- f+◦ f is an orthogonal projection of W onto W(2).

Hence and from Definition 5.620 the validity of the theorem describing a matrix
of the Moore-Penrose homomorphism is already evident (why is the assumption
of the orthonormality of the bases necessary?).

Theorem 5.18 Let V, W be Euclidean vector spaces and let B, C be, re-
spectively, orthonormal bases of these spaces. Then for every homomorphism
f : V→W, it holds:

(f+, C,B) = (f,B, C)+. (5.19)

Example 5.19 Let a system of linear equations be given:

x1 + 2x2 + 3x3 + 4x4 = 5

x1 + x2 + 2x3 + 3x4 = 2

2x1 + 3x2 + 5x3 + 7x4 = 3

Find its optimal approximate solution.

[Instruction: Denote the matrix of the system by A and the vector of right sides
by b. The optimal approximate solution is given by the relation (5.15). First find
a matrix A+ – proceed according to Remark 5.9:

Since h(A) = r = 2, it is possible to choose

F = (b(1), b(2)) =

 1 2
1 1
2 3

 ,

20Also by use of, for example, theorems 2.35 and 2.80.
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and then

G =


1 0
0 1
1 1
2 1

 .

We will further find that

(F TF)−1 =
1

3

(
14 −9
−9 6

)
, (GTG)−1 =

1

3

(
1 −1
−1 2

)
.

Substituting to the relation (5.13), you obtain

A+ =
1

9


−7 8 1
10 −11 −1
3 −3 0
−4 5 1

 .

Substituting to the relation (5.15), you obtain the following result:

xT0 =
1

9


−7 8 1
10 −11 −1
3 −3 0
−4 5 1


 5

2
3

 ,

which means that the optimal approximate solution is the ordered triple

x0 = (x1, x2, x3) =

(
−16

9
,

25

9
,−7

9

)
.

Note: for the given system, it holds that h(A) = 2, h(A|b) = 3, which means

that the system is not solvable.]
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Olomouci, 2010, 179 p. ISBN 978-80-244-2522-1.

[7] Naylor, W., Sell, G.: Linear Operator Theory in Engineering and Science.
New York: Springer, 1982, 624 p. ISBN 978-1-4612-5773-8

[8] Rao, C. R., Mitra, K. S.: Generalized Inverse of Matrices and Its Applica-
tion, New York 1971 Generalized inverse of matrices and its applications.
2. edition New York: Wiley, 1971, xiv, 240 p. ISBN 04-717-0821-6.
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