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T–1 Let R denote the set of real numbers. Find all functions f : R → R such that
xf(x + xy) = xf(x) + f(x2)f(y)

for all x, y ∈ R.
Solution. Setting x = y = 0 in

xf(x + xy) = xf(x) + f(x2)f(y) (0)

we get f(0) = 0. Using this in (0) with y = −1 we obtain

xf(x) + f(x2)f(−1) = 0. (1)

Let us distinguish the cases f(−1) = 0 and f(−1) 6= 0.
The case f(−1) = 0. It follows from (1) that f(x) = 0 for all x 6= 0. As we

already know, f(0) = 0. Thus we get the zero function f(x) = 0, which is obviously
a solution.
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The case f(−1) 6= 0. Setting x = −1 in (1) yields f(1) = 1. Using this in (1)
with x = 1, we get f(−1) = −1 and hence (1) can be transformed to

xf(x) = f(x2). (2)

Put now y = x − 1 in (0) to get

xf(x2) = xf(x) + f(x2)f(x − 1). (3)

Summing up (2) and (3) we obtain the equation

f(x2)(f(x− 1) − (x − 1)) = 0. (4)

Assume that f(a) = 0 for some a 6= 0. Then f(a2) = 0 by (2) and hence (0) with
x = a implies that af(a + ay) = 0, i.e. f(a + ay) = 0. Since y is arbitrary here, we
get f(−1) = 0, which is not the case. Therefore, for any x 6= 0 we have f(x) 6= 0, and
hence f(x2) 6= 0 as well. Thus (4) leads to the conclusion that f(x − 1) = x − 1 for
any x 6= 0, i.e. f(x) = x for any x 6= −1. Since we already know that f(−1) = −1,
we get the identity function f(x) = x, which is obviously a solution.

T–2 Let n > 2 be an integer. There are n positive integers written on a blackboard.
In each step we choose two of the numbers on the blackboard and replace each of
them by their sum. Determine all values of n for which it is always possible to get
n identical integers in a finite number of steps.

Solution. Starting from the n-tuple (2, 2, 1, 1, . . . , 1) with any n > 3, we get always
an n-tuple in which the number of maximal values is even. Hence no odd n > 3 is as
required.
Let us show by induction that any even n > 2 is satisfactory, which is obvious

if n = 2. For an even n > 4, by the induction hypothesis, we can transform any
initial n-tuple to (a, a, . . . , a, b, b). If a 6= b, we apply repeatedly some of the following
series of steps, which always lead to an n-tuple of type (a, . . . , a

︸ ︷︷ ︸

k

, b, . . . , b
︸ ︷︷ ︸

n−k

) in which the

number k may differ from the initial value k = n − 2 (remaining to be even):

series α: (a, . . . , a
︸ ︷︷ ︸

k

, b, . . . , b
︸ ︷︷ ︸

n−k

) → (2a, . . . , 2a
︸ ︷︷ ︸

k

, b, . . . , b
︸ ︷︷ ︸

n−k

),

series β: (a, . . . , a
︸ ︷︷ ︸

k

, b, . . . , b
︸ ︷︷ ︸

n−k

) → (a, . . . , a
︸ ︷︷ ︸

k

, 2b, . . . , 2b
︸ ︷︷ ︸

n−k

),

series γ1 (if k 6 n − k): (a, . . . , a
︸ ︷︷ ︸

k

, b, . . . , b
︸ ︷︷ ︸

n−k

) → (a + b, . . . , a + b
︸ ︷︷ ︸

2k

, b, . . . , b
︸ ︷︷ ︸

n−2k

),

series γ2 (if k > n − k): (a, . . . , a
︸ ︷︷ ︸

k

, b, . . . , b
︸ ︷︷ ︸

n−k

) → (a, . . . , a
︸ ︷︷ ︸

2k−n

, a + b, . . . , a + b
︸ ︷︷ ︸

2(n−k)

).

To describe our procedure, we introduce the notation c = 2P (c)N(c) for any positive
integer c, where P (c) > 0 and N(c) is odd. To each n-tuple (a, . . . , a

︸ ︷︷ ︸

k

, b, . . . , b
︸ ︷︷ ︸

n−k

) with

a 6= b, let us apply
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⊲ series α if P (a) < P (b),
⊲ series β if P (a) > P (b),
⊲ series γ1 or γ2 if P (a) = P (b) (and hence N(a) 6= N(b)).
Using the series α and β, the numbers N(a), N(b) do not change, while the series

γ1 and γ2 cause the changes exactly one of them, namely

N(b) →
N(a) + N(b)

2m
, or N(b) →

N(a) + N(b)

2m
respectively,

where m = P (N(a) + N(b)) > 1 and hence

N(a) + N(b)

2m
6

N(a) + N(b)

2
< max(N(a), N(b))

(recall that N(a) 6= N(b)). Consequently, throughout our procedure, the value of
max(N(a), N(b)) is a nonincreasing variable, and hence constant after a finite numbers
of series. From this moment, we must still have either N(a) > N(b), or N(a) 6 N(b).
This excludes either series γ1, or series γ2 from future applications, in which, therefore,
all possible changes of the parameter k are either k → 2k, or (n−k) → 2(n−k). Since
this can repeat only r times, where 2r 6 n, at the end we always we get an n-tuple
(a, . . . , a, b, . . . , b) for which (if a 6= b) the continuation of our procedure reduces only
to the series α and β. Applying now either α, or β exactly |P (a)−P (b)| times, we get
an n-tuple (a′, . . . , a′, b′, . . . , b′) with P (a′) = P (b′). Since γ1, γ2 are already excluded,
we have a′ = b′, which completes the induction proof.

Another solution (German team, adapted). We show without induction on n that any
even n = 2k is satisfactory. At the beginning in the initial 2k-tuple (a1, . . . , a2k) we
replace every pair (a2i−1, a2i) (for i = 1, . . . , k) by the pair (a2i−1 + a2i, a2i−1 + a2i).
From now on, we shall have always identical numbers on the (2i − 1)th and (2i)th
position. Hence because of brevity we shall work with k-tuples (x, y, z, . . . ) instead
of 2k-tuples (x, x, y, y, z, z, . . .). We are allowed to do the following transformations
on the k-tuples:

⊲ choose two of the numbers x, y and replace each of them by their sum (this corre-
sponds with two steps (. . . , x, x, . . . , y, y, . . . ) → (. . . , x+y, x, . . . , x+y, y, . . . ) →
(. . . , x + y, x + y, . . . , x + y, x + y, . . . ) performed on the 2k-tuple);

⊲ choose one number x and multiply it by 2 (this corresponds with one step
(. . . , x, x, . . . ) → (. . . , x + x, x + x, . . . );

⊲ divide all numbers by 2 (this obviously does not affect anything; formally we
could remember how many times we have performed this dividing and multiply
all the numbers by the proper power of two at the end).
Our aim is to obtain k identical numbers. We reach it by iterating the following

algorithm:
1. While there are at least two odd numbers, find the minimum and the maximum
odd number and replace each of them by their (even) sum.

2. If there is one odd number left after finishing the first step, multiply it by two.
3. Divide all numbers by 2.
Clearly, after each iteration, the maximum number among all k numbers either

decreases or does not change. As this maximum is permanently a positive integer, af-
ter a finite number of iterations, it fixes at the valueM and does not change anymore.
From now on, look at the number N of M ’s in the k-tuple.
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Obviously M is odd (otherwise it would decrease in the third step in the next
iteration). If N < k, then there is at least one number m with m < M . If m is
odd, after the next iteration N decreases. As it is impossible to increase N in the
iterations, it must be constant after a finite number of steps and there must be only
even m with m < M . But every even m is divided by 2 in each iteration and after
some iterations some odd number less thanM must appear. So there are no numbers
less than M , which completes the proof.

T–3 An acute-angled triangle ABC is given. Let E be a point such that B and E
lie on different sides of the line AC, and let D be an interior point of the segment
AE. Suppose that 6 ADB = 6 CDE, 6 BAD = 6 ECD and 6 ACB = 6 EBA. Prove
that B, C and E are collinear.

Solution. Condition 6 ADB = 6 CDE motivates us to reflect B over AE to B′ (Fig. 3).
Then C, D and B′ are collinear and 6 EAB′ = 6 EAB = 6 ECD = 6 ECB′, so
B′ACE is a cyclic quadrilateral. This implies that 6 ECA = π − 6 EB′A = π −
6 EBA = π − 6 ACB, hence 6 ECA + 6 ACB = π and thus B, C, E are collinear.

A B

B′

C

D

E

Fig. 3

Comment. With the same success, we can reflect C over AE to get a point C′ collinear
with B, D and such that ABEC′ is cyclic, hence 6 ECA = 6 EC′A = π − 6 EBA =
π − 6 ACB, i.e. 6 ECA + 6 ACB = π again.
Because of the proved collinearity of B, C, E, the condition 6 ACB = 6 EBA

implies that AB = AC, while the condition 6 BAD = 6 ECD implies that ABCD
must be a cyclic quadrilateral. The last fact serves as a good motivation for an-
other solution. Before we present it, let us note that the situations described in the
statement of the problem do exist and all of them are of the following form:

ABC is an isosceles triangle with AB = AC, points B, C, E are collinear (C is
between B and E) and AE cuts the circumcircle of ABC at D.

Another solution. Suppose that B, C, E are not collinear. The line through B, which
is parallel to CE, meets the lines CD and AD at C′ and E′, respectively. Since
6 E′C′D = 6 ECD = 6 BAD, the quadrilateral ABC′D is cyclic (Fig. 4). Denote its
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circumcircle by K. We have 6 AC′B = 6 ADB = 6 CDE = 6 C′DE = 6 ABC′, i.e.
6 AC′B = 6 ABC′ (so ABC′ is an isosceles triangle).
Suppose that C lies inside the segment C′D. Then C lies inside K (on the same

side of the line AB as C′), therefore 6 ACB > 6 AC′B = 6 ABC′ = 6 ABE′ > 6 ABE
(because E lies between A and E′), which contradicts to 6 ACB = 6 EBA.
Similarly, if C does not lie on the segment C′D, then C lies outside K (on the same

side of the line AB as C′), therefore 6 ACB < 6 AC′B = 6 ABC′ = 6 ABE′ < 6 ABE
(because E′ lies between A and E), which again contradicts to 6 ACB = 6 EBA.

A B

C
C ′

D

E

E′

A B

C
D

E

Fig. 4 Fig. 5

Another solution (Karel Horák, Czech Republic). From the given equalities of angles
it follows that triangles ABD and CED are similar (Fig. 5). From that similarity we
immediately get that triangles ACD and BED are similar (by sas, same angles at
common vertex D, and proportional sides). From the equal angles BED and ACD
if follows that the sum of three angles BCA, ACD and DCE is equal to the sum of
angles in the triangle ABE, so E, C, and B are collinear.

T–4 Let n be a positive integer. Prove that if the sum of all positive divisors of n
is a perfect power of 2, then the number of these divisors is also a perfect power of 2.

Solution. Suppose that n = ps1

1 ps2

2 . . . psk

k
, where p1, . . . , pk are distinct primes and

si > 1 for each i, and that the sum of all positive divisors of n, which is given by

(1 + p1 + p2
1 + · · ·+ ps1

1 )(1 + p2 + p2
2 + · · ·+ ps2

2 ) . . . (1 + pk + p2
k

+ · · ·+ psk

k
),

is a perfect power of 2. Then each of the factors

fi = 1 + pi + p2
i + · · · + psi

i

is also a perfect power of 2 greater than 1 and hence both pi and si are odd. Suppose
that si > 1. In this case we have

fi = (1 + pi)(1 + p2
i + p4

i + · · ·+ psi−1
i

).
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Since fi has no odd divisor greater than 1, the even integer si − 1 (which is supposed
to be positive) must be of the form 4k+2 and thus we can make another factorization

fi = (1 + pi)(1 + p2
i )(1 + p4

i + p8
i + · · · + psi−3

i
).

Consequently, both 1 + pi and 1 + p2
i
are powers of 2, hence 1 + pi | 1 + p2

i
, which

contradicts to 1 + p2
i

= (1 + pi)(pi − 1) + 2 (as 1 + pi | 2 is impossible). This means
that si = 1 for each i and thus the number of divisors of n equals 2k.
Note that the above solution can be finished without observing the fact that 1+pi

and 1 + p2
i
cannot be powers of 2 at the same time. Indeed, repeating the procedure

of factorization we get finally

fi = (1 + pi)
(
1 + p2

i

)(
1 + p4

i

)
. . .

(

1 + p2ti

i

)

,

hence si = 2ti+1 − 1 with some ti > 0 for each i and thus the number of divisors of n
equals 2k+t1+t2+···+tk . (As we know from the original solution, ti = 0 for each i.)
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