
EUROPEAN

M
ID

D
L
E

S
E
C

O
N

D

M
A

TH
E
M

A
TIC

A
L

O
L
Y
M

P
IA

D

OLOMOUC

CZECH REPUBLIC 2008

Individual Problems

and

Solutions

I–1 Let (an)∞n=1 be a sequence of positive integers such that an < an+1 for all n > 1.
Suppose that for all quadruples of indices (i, j, k, l) such that 1 6 i < j 6 k < l and
i+ l = j +k, the inequality ai +al > aj +ak is satisfied. Determine the least possible
value of a2008.

Solution (Jaromír Šimša, Czech Republic). Since a2 − a1 > 1 and an+2 − an+1 >

(an+1−an)+1 (by applying the quadruple (n, n+1, n+1, n+2) for each n), induction
yields an+1−an > n for all n > 1. Thus an+1 > n+an (and a1 > 1), hence induction
again yields an >

1

2
(n2 −n +2). Since the sequence an = 1

2
(n2 −n +2) is as required

(transform ai + al > aj + ak to i2 + l2 > j2 + k2 and substitute i = d − y, l = d + y,
j = d − x, k = d + x, where 0 6 x < y), the smallest value of a2008 is 2,015,029.

I–2 Consider a chessboard n × n where n > 1 is a positive integer. We select the
centers of 2n − 2 squares. How many selections are there such that no two selected
centers lie on a line parallel to one of the diagonals of the chessboard?

Solution. By a k-diagonal we mean any chessboard diagonal formed by k squares,
where 1 6 k 6 n. Since the number of stones is 2n−2, while the number of chessboard

1



diagonals in one direction is 2n−1 and two of them, which are 1-diagonals, must not be
occupied by stones simultaneously, we can conclude that each k-diagonal with k > 1
contains exactly 1 stone and that exactly two of the 4 corner squares (1-diagonals)
are occupied (and lie on the same border side). Let us call two different directions of
diagonals as A and B.
Now let us consider the set P of all the pairs (s, f), for which the stone s lies on

the same diagonal as the unoccupied (“free”) square f . There are exactly n2 −2n+2
free squares on the chessboard, two of them are corner, hence for each of the n2 − 2n
free squares f which lie on two k-diagonals with k > 1, we have (s, f) ∈ P for exactly
two stones s. Thus the total number p of the pairs in P is given by the formula

p = 2(n2 − 2n) + 2 = 2n2 − 4n + 2,

where +2 stands for the two free corner squares.
If a stone s lies on the intersection of a k1-diagonal and a k2-diagonal with

k1, k2 > 1, then the number of pairs (s, f) ∈ P with this s equals k1 + k2 − 2. The
same holds also for the two other stones with {k1, k2} = {1, n}. Obviously, for any
stone we have k1 +k2 > n+1 with equality iff the stone lies on a border square. Thus
for each stone s, the number of pairs (s, f) ∈ P is at least n − 1, and therefore

p > (2n − 2)(n − 1) = 2n2 − 4n + 2.

Since we have the equality, all the stones must lie on the boarder squares of the
chessboard.
If we put some stones (even no stone) on the first horizontal row in any way,

then the border squares for the other stones are determined in exactly one way. To
see this, consider separately the four corner squares and then, for each k, 1 < k < n,
the pair of k-diagonals one direction together with the pair of (n + 1 − k)-diagonals
in the other direction. Hence there are exactly 2n possibilities how to distribute the
stones on the chessboard as required.

Comment. The proof of the fact that all the stones must lie on some of the border
squares from the preceding solution can be presented in the following algebraic form
without counting the pairs (s, f).
Consider the chessboard n × n as the grid {0, 1, . . . , m} × {0, 1, . . . , m} with

m = n − 1, in which the occupied squares are represented by points (ai, bi) with
i = 1, 2, . . . , 2m. Since ai−bi are 2m distinct integers from {−m,−m+1, . . . , m−1, m}
and the boundary values ±m are not reached simultaneously, the values of |ai − bi|
(in nondecreasing order) are the numbers

0, 1, 1, 2, 2, . . . , m − 1, m − 1, m

whose sum equals m2. Thus we have

i=2m∑

i=1

|ai − bi| = m2 (1)

and, similarly,
i=2m∑

i=1

|ai + bi − m| = m2. (2)
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Summing (1) and (2) and taking into account the identity

|a − b| + |a + b − m| = max(|2a − m|, |2b − m|) for any a, b, m ∈ R,

we obtain the equality

i=2m∑

i=1

max(|2ai − m|, |2bi − m|) = 2m2. (3)

Since |2ai − m| 6 m and |2bi − m| 6 m for each i, the following inequality

i=2m∑

i=1

max(|2ai − m|, |2bi − m|) 6 2m · m = 2m2

holds and hence the equality (3) implies that

max(|2ai − m|, |2bi − m|) = m for any i = 1, 2, . . . , 2m.

This means that any (ai, bi) is a boundary point of the grid and the proof is complete.

Another solution (Bernd Mulansky, Germany). The first paragraph is identical with
that from the first solution. It follows that each satisfactory distribution of the 2n−2
stones can be derived as a result of the following procedure in n steps:

⊲ Step 1: One stone is placed on one of the two 1-diagonals of direction A.
⊲ Step k (where 2 6 k 6 n − 1): Two stones are placed, each on one of the two

k-diagonals of direction A.
⊲ Step n: One stone is placed on the n-diagonal of direction A.
Notice that for each m = 1, 2, . . . , n − 1 the following conclusion clearly holds:

after m steps of our procedure, well-done in the sense that no two stones were placed
on the same diagonal (of direction B), all the 2m−1 longest k-diagonals of direction B
(those with k > n + 1 − m) are occupied by stones. Consequently, if in addition
m < n − 1, in the next step m + 1 the two stones must be placed on the border
squares of the two (m + 1)-diagonals of direction A (their other squares lie on the
occupied diagonals of direction B) and there are exactly two ways in which this can
be well-done. Analogously for the case m + 1 = n. Thus we have two possibilities in
each of the n steps and the number of all satisfactory distributions equals 2n.

Another solution (Pavol Novotný, Slovakia). Let us colour the chessboard squares as
usual, with the black square in the left upper corner. It is easy to show that n − 1
stones must be placed on the black squares (let us call them black stones), analogously
for the n − 1 white stones. The number sn of all satisfactory stone distributions on
the chessboard n×n is equal to the product bn ·wn, where bn and wn are the numbers
of satisfactory distributions of black and white stones, respectively. We have w1 = 1,
w2 = w3 = 2, b1 = 1, b2 = 2 and b3 = 4. Easy arguments show that for each n > 3,
wn = 2wn−2,1 and bn = 2wn−1,2 hence sn = bnwn = 4wn−2wn−1 = 2bn−1wn−1 =
2sn−1 and the result sn = 2n follows.

1 Remove two white 2-diagonals of one direction and two white (n − 1)-diagonals of the other
direction; the remaining white squares form the same diagonals as white squares of the chessboard
(n − 2) × (n − 2).

2 Remove one black n-diagonal; the remaining black squares form the same diagonals as the white

squares of the chessboard (n − 1) × (n − 1).
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I–3 Let ABC be an isosceles triangle with |AC| = |BC|. Its incircle touches AB
and BC at D and E, respectively. A line (different from AE) passes through A and
intersects the incircle at F and G. The lines EF and EG intersect the line AB at K
and L, respectively. Prove that |DK| = |DL|.

Solution. In view of symmetry, suppose that AF < AG, and, in addition, that G is
on the smaller arc DE (for the other case see the last two sentences below).
If the incircle touches AC at J , then 6 CAB = 6 CJE = 6 JDE = 6 JFE (Fig. 1),

hence AJFK is a cyclic quadrilateral. Thus 6 AJK = 6 AFK = 6 EFG = 6 LEB,
which implies that AJK and BEL are congruent triangles. Since K and L are inner
points of the segment AB, AK = BL means that DK = DL.
If G is on the larger arc DE (between E and J), then K, A, B, L is the order of

these collinear points and the cyclic quadrilateral is AKJF . The rest of the proof is
the same.
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Fig. 1 Fig. 2

Another solution (Tomáš Pavlík, Czech Republic). Let us denote X the intersection
of line AF with side BC of the given triangle (Fig. 2). The power of the point X with
regard to the incircle of ABC gives XE2 = XF · XG which means that

XG

XE
=

XE

XF
. (1)

Let us write Menelaos theorem for triangle ABX and lines EG and EF , respectively:

AL

LB
·

BE

EX
·
XG

GA
= 1 and

AK

KB
·

BE

EX
·
XF

FA
= 1.

With help of (1) we can rewrite both the last equalities as

XE

XF
·
AL · BE

LB · GA
= 1 and

XE

XF
·
KB · FA

AK · BE
= 1

or
AL · BE

LB · GA
=

KB · FA

AK · BE
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which gives
AK · AL · BE2

KB · LB · FA · GA
= 1,

hence
AK · AL = KB · LB

as AF · AG = AD2 = BD2 = BE2 clearly holds.
Depending on the position of point G, the points K and L lie inside or outside

the segment AB simultaneously, according to that we choose plus or minus sign in

AK · (AB ± BL) = AK · AL = KB · LB = (AB ± AK) · BL

which results into AK = BL in both cases. This is equivalent to the wanted equality
DK = DL.

I–4 Find all integers k such that for every integer n, the numbers 4n+1 and kn+1
are relatively prime.

Solution. Since 4n + 1 is odd, the identity k − 4 = k(4n + 1) − 4(kn + 1) shows that
4n + 1 and kn + 1 are relatively prime if k − 4 has not any odd divisor p > 1, i.e. if
k − 4 = ±2k with any nonnegative integer k.
On the other hand, if k − 4 has got an odd divisor p > 1, then we can easily

find a multiple of p of the form 4n + 1 (for example, the number p2 or simply one of
the numbers p, 3p). For any number 4n + 1 being a multiple of p, the above identity
implies that p | kn + 1, hence 4n + 1 and kn + 1 are not relatively prime.

Answer : k = 4 ± 2k, where k = 0, 1, 2, . . .
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